Polars from Python and R

Pro-tip: Just swap . (Python) for $ (R), or vice versa

Load libraries

import polars as pl
import time
import matplotlib
library(polars)

Scan data

nyc = pl.scan_parquet("nyc-taxi/**/*.parquet", hive_partitioning=True)
nyc
naive plan: (run LazyFrame.explain(optimized=True) to see the optimized plan)

Parquet SCAN [nyc-taxi/year=2012/month=1/part-0.parquet, ... 11 other sources]

PROJECT */24 COLUMNS
nyc = pl$scan_parquet("nyc-taxi/**/*.parquet", hive_partitioning=TRUE)
nyc
polars LazyFrame
 $explain(): Show the optimized query plan.

Naive plan:
Parquet SCAN [nyc-taxi/year=2012/month=1/part-0.parquet, ... 11 other sources]
PROJECT */24 COLUMNS

First example

Polars operations are registered as queries until they are collected.

q1 = (
    nyc
    .group_by(["passenger_count"])
    .agg([
            pl.mean("tip_amount")#.alias("mean_tip") ## alias is optional
        ])
    .sort("passenger_count")
)
q1
naive plan: (run LazyFrame.explain(optimized=True) to see the optimized plan)

SORT BY [col("passenger_count")]

AGGREGATE

[col("tip_amount").mean()] BY [col("passenger_count")] FROM

Parquet SCAN [nyc-taxi/year=2012/month=1/part-0.parquet, ... 11 other sources]

PROJECT */24 COLUMNS
q1 = (
    nyc
    $group_by("passenger_count")
    $agg(
        pl$mean("tip_amount")#$alias("mean_tip") ## alias is optional
    )
    $sort("passenger_count")
)
q1 
polars LazyFrame
 $explain(): Show the optimized query plan.

Naive plan:
SORT BY [col("passenger_count")]
  AGGREGATE
    [col("tip_amount").mean()] BY [col("passenger_count")] FROM
    Parquet SCAN [nyc-taxi/year=2012/month=1/part-0.parquet, ... 11 other sources]
    PROJECT */24 COLUMNS
R-polars multiline syntax

Polars-style x$method1()$method2()... chaining may seem a little odd to R users, especially for multiline queries. Here I have adopted the same general styling as Python: By enclosing the full query in parentheses (), we can start each $method() on a new line. If this isn’t to your fancy, you could also rewrite these multiline queries as follows:

nyc$group_by(
    "passenger_count"
)$agg(
    pl$mean("tip_amount")
)$sort("passenger_count")

(Note: this is the naive query plan, not the optimized query that polars will actually implement for us. We’ll come back to this idea shortly.)

Calling collect() enforces computation.

tic = time.time()
dat1 = q1.collect()
toc = time.time()

dat1
shape: (18, 2)
passenger_count tip_amount
i64 f64
0 0.862099
1 1.151011
2 1.08158
3 0.962949
4 0.844519
177 1.0
208 0.0
247 2.3
249 0.0
254 0.0
# print(f"Time difference of {toc - tic} seconds")
tic = Sys.time()
dat1 = q1$collect()
toc = Sys.time()

dat1
shape: (18, 2)
passenger_count tip_amount
i64 f64
0 0.862099
1 1.151011
2 1.08158
3 0.962949
4 0.844519
177 1.0
208 0.0
247 2.3
249 0.0
254 0.0
toc - tic
Time difference of 1.1572 secs

Aggregation

Subsetting along partition dimensions allows for even more efficiency gains.

q2 = (
    nyc
    .filter(pl.col("month") <= 3)
    .group_by(["month", "passenger_count"])
    .agg([pl.mean("tip_amount").alias("mean_tip")])
    .sort("passenger_count")
)
q2 = (
    nyc
    $filter(pl$col("month") <= 3)
    $group_by("month", "passenger_count")
    $agg(pl$mean("tip_amount")$alias("mean_tip"))
    $sort("passenger_count")
) 

Let’s take a look at the optimized query that Polars will implement for us.

# q2             # naive
# q2.show_graph()  # optimized
# q2              # naive
cat(q2$explain()) # optimized
SORT BY [col("passenger_count")]
  AGGREGATE
    [col("tip_amount").mean().alias("mean_tip")] BY [col("month"), col("passenger_count")] FROM
    Parquet SCAN [nyc-taxi/year=2012/month=1/part-0.parquet, ... 11 other sources]
    PROJECT 2/24 COLUMNS
    SELECTION: [(col("month").cast(Unknown(Float))) <= (dyn float: 3.0)]

Now, let’s run the query and collect the results.

tic = time.time()
dat2 = q2.collect()
toc = time.time()

dat2
shape: (29, 3)
month passenger_count mean_tip
i64 i64 f64
3 0 0.877675
1 0 0.841718
2 0 0.876637
1 1 1.036863
3 1 1.089205
2 9 0.0
1 9 0.0
1 65 0.0
1 208 0.0
3 208 0.0
# print(f"Time difference of {toc - tic} seconds")
tic = Sys.time()
dat2 = q2$collect()
toc = Sys.time()

dat2
shape: (29, 3)
month passenger_count mean_tip
i64 i64 f64
2 0 0.876637
1 0 0.841718
3 0 0.877675
2 1 1.06849
1 1 1.036863
2 9 0.0
1 9 0.0
1 65 0.0
3 208 0.0
1 208 0.0
toc - tic
Time difference of 1.016284 secs

High-dimensional grouping example. This query provides an example where polars is noticeably slower than DuckDB.

q3 = (
    nyc
    .group_by(["passenger_count", "trip_distance"])
    .agg([
        pl.mean("tip_amount").alias("mean_tip"),
        pl.mean("fare_amount").alias("mean_fare"),
        ])
    .sort(["passenger_count", "trip_distance"])
)

tic = time.time()
dat3 = q3.collect()
toc = time.time()

dat3
shape: (25_569, 4)
passenger_count trip_distance mean_tip mean_fare
i64 f64 f64 f64
0 0.0 1.345135 17.504564
0 0.01 0.178571 34.642857
0 0.02 4.35 61.05
0 0.03 16.25 74.0
0 0.04 0.03 46.5
208 5.1 0.0 12.5
208 6.6 0.0 17.7
247 3.31 2.3 11.5
249 1.69 0.0 8.5
254 1.02 0.0 6.0
# print(f"Time difference of {toc - tic} seconds")
q3 = (
    nyc
    $group_by("passenger_count", "trip_distance")
    $agg(
        pl$mean("tip_amount")$alias("mean_tip"),
        pl$mean("fare_amount")$alias("mean_fare")
        )
    $sort("passenger_count", "trip_distance")
)

tic = Sys.time()
dat3 = q3$collect()
toc = Sys.time()
 
dat3
shape: (25_569, 4)
passenger_count trip_distance mean_tip mean_fare
i64 f64 f64 f64
0 0.0 1.345135 17.504564
0 0.01 0.178571 34.642857
0 0.02 4.35 61.05
0 0.03 16.25 74.0
0 0.04 0.03 46.5
208 5.1 0.0 12.5
208 6.6 0.0 17.7
247 3.31 2.3 11.5
249 1.69 0.0 8.5
254 1.02 0.0 6.0
toc - tic
Time difference of 9.987634 secs

As an aside, if we didn’t care about column aliases (or sorting), then the previous query could be shortened to:

(
    nyc
    .group_by(["passenger_count", "trip_distance"])
    .agg(pl.col(["tip_amount", "fare_amount"]).mean())
    .collect()
)
(
    nyc
    $group_by("passenger_count", "trip_distance")
    $agg(pl$col("tip_amount", "fare_amount")$mean())
    $collect()
)

Pivot (reshape)

In polars, we have two distinct reshape methods:

  • pivot: => long to wide
  • unpivot: => wide to long

Here we’ll unpivot to go from wide to long and use the eager execution engine (i.e., on the dat3 DataFrame object that we’ve already computed) for expediency.

dat3.unpivot(index = ["passenger_count", "trip_distance"])
shape: (51_138, 4)
passenger_count trip_distance variable value
i64 f64 str f64
0 0.0 "mean_tip" 1.345135
0 0.01 "mean_tip" 0.178571
0 0.02 "mean_tip" 4.35
0 0.03 "mean_tip" 16.25
0 0.04 "mean_tip" 0.03
208 5.1 "mean_fare" 12.5
208 6.6 "mean_fare" 17.7
247 3.31 "mean_fare" 11.5
249 1.69 "mean_fare" 8.5
254 1.02 "mean_fare" 6.0
dat3$unpivot(index = c("passenger_count", "trip_distance"))
shape: (51_138, 4)
passenger_count trip_distance variable value
i64 f64 str f64
0 0.0 "mean_tip" 1.345135
0 0.01 "mean_tip" 0.178571
0 0.02 "mean_tip" 4.35
0 0.03 "mean_tip" 16.25
0 0.04 "mean_tip" 0.03
208 5.1 "mean_fare" 12.5
208 6.6 "mean_fare" 17.7
247 3.31 "mean_fare" 11.5
249 1.69 "mean_fare" 8.5
254 1.02 "mean_fare" 6.0

Joins (merges)

mean_tips  = nyc.group_by("month").agg(pl.col("tip_amount").mean())
mean_fares = nyc.group_by("month").agg(pl.col("fare_amount").mean())
(
    mean_tips
    .join(
        mean_fares,
        on = "month",
        how = "left" # default is inner join
    )
    .collect()
)
shape: (12, 3)
month tip_amount fare_amount
i64 f64 f64
4 1.043167 10.33549
8 1.079521 10.49265
7 1.059312 10.379943
5 1.078014 10.585157
1 1.007817 9.813488
11 1.250903 12.270138
12 1.237651 12.313953
2 1.036874 9.94264
10 1.281239 12.501252
6 1.091082 10.548651
mean_tips  = nyc$group_by("month")$agg(pl$col("tip_amount")$mean())
mean_fares = nyc$group_by("month")$agg(pl$col("fare_amount")$mean())
(
    mean_tips
    $join(
        mean_fares,
        on = "month",
        how = "left"  # default is inner join
    )
    $collect()
)
shape: (12, 3)
month tip_amount fare_amount
i64 f64 f64
4 1.043167 10.33549
3 1.056353 10.223107
7 1.059312 10.379943
5 1.078014 10.585157
2 1.036874 9.94264
12 1.237651 12.313953
6 1.091082 10.548651
9 1.254601 12.391198
8 1.079521 10.49265
10 1.281239 12.501252

Appendix: Alternate interfaces

The native polars API is not the only way to interface with the underlying computation engine. Here are two alternate approaches that you may prefer, especially if you don’t want to learn a new syntax.

Ibis (Python)

The great advantage of Ibis (like dbplyr) is that it supports multiple backends through an identical frontend. So, all of our syntax logic and workflow from the Ibis+DuckDB section carry over to an equivalent Ibis+Polars workflow too. All you need to do is change the connection type. For example:

import ibis
import ibis.selectors as s
from ibis import _

##! This next line is the only thing that's changed !##
con = ibis.polars.connect()

con.register("nyc-taxi/**/*.parquet", "nyc")
<string>:2: FutureWarning: `Backend.register` is deprecated as of v9.1; use the explicit `read_*` method for the filetype you are trying to read, e.g., read_parquet, read_csv, etc.
DatabaseTable: nyc
  vendor_name           string
  pickup_datetime       timestamp(3)
  dropoff_datetime      timestamp(3)
  passenger_count       int64
  trip_distance         float64
  pickup_longitude      float64
  pickup_latitude       float64
  rate_code             string
  store_and_fwd         string
  dropoff_longitude     float64
  dropoff_latitude      float64
  payment_type          string
  fare_amount           float64
  extra                 float64
  mta_tax               float64
  tip_amount            float64
  tolls_amount          float64
  total_amount          float64
  improvement_surcharge float64
  congestion_surcharge  float64
  pickup_location_id    int64
  dropoff_location_id   int64
nyc = con.table("nyc")

(
  nyc
  .group_by(["passenger_count"])
  .agg(mean_tip = _.tip_amount.mean())
  .to_polars()
)
shape: (18, 2)
┌─────────────────┬──────────┐
│ passenger_count ┆ mean_tip │
│ ---             ┆ ---      │
│ i64             ┆ f64      │
╞═════════════════╪══════════╡
│ 5               ┆ 1.102732 │
│ 8               ┆ 0.350769 │
│ 0               ┆ 0.862099 │
│ 4               ┆ 0.844519 │
│ 249             ┆ 0.0      │
│ …               ┆ …        │
│ 6               ┆ 1.128365 │
│ 177             ┆ 1.0      │
│ 3               ┆ 0.962949 │
│ 254             ┆ 0.0      │
│ 247             ┆ 2.3      │
└─────────────────┴──────────┘

tidypolars (R)

The R package tidypolars (link) provides the “tidyverse” syntax while using polars as backend. The syntax and workflow should thus be immediately familar to R users.

It’s important to note that tidypolars is solely focused on the translation work. This means that you still need to load the main polars library alongside it for the actual computation, as well as dplyr (and potentially tidyr) for function generics.

library(polars) ## Already loaded
library(tidypolars)
library(dplyr, warn.conflicts = FALSE)
library(tidyr, warn.conflicts = FALSE)

nyc = scan_parquet_polars("nyc-taxi/**/*.parquet")

nyc |> 
    summarise(mean_tip = mean(tip_amount), .by = passenger_count) |>
    compute()
shape: (18, 2)
passenger_count mean_tip
i64 f64
6 1.128365
9 0.8068
0 0.862099
3 0.962949
66 1.5
8 0.350769
249 0.0
208 0.0
65 0.0
247 2.3

Aside: Use collect() instead of compute() at the end if you would prefer to return a standard R data.frame instead of a Polars DataFrame.

See also polarssql (link) if you would like yet another “tidyverse”-esque alternative that works through DBI/d(b)plyr.