import polars as pl
import time
import matplotlibPolars from Python and R
Pro-tip: Just swap . (Python) for $ (R), or vice versa
Load libraries
library(polars)Warning: package 'polars' was built under R version 4.5.2
Scan data
nyc = pl.scan_parquet("nyc-taxi/**/*.parquet", hive_partitioning=True)
nycnyc = pl$scan_parquet("nyc-taxi/**/*.parquet", hive_partitioning=TRUE)
nyc<polars_lazy_frame>
First example
Polars operations are registered as queries until they are collected.
q1 = (
nyc
.group_by(["passenger_count"])
.agg([
pl.mean("tip_amount")#.alias("mean_tip") ## alias is optional
])
.sort("passenger_count")
)
q1q1 = (
nyc
$group_by("passenger_count")
$agg(
pl$col("tip_amount")$mean()
)
$sort("passenger_count")
)
q1 <polars_lazy_frame>
Polars-style x$method1()$method2()... chaining may seem a little odd to R users, especially for multiline queries. Here I have adopted the same general styling as Python: By enclosing the full query in parentheses (), we can start each $method() on a new line. If this isn’t to your fancy, you could also rewrite these multiline queries as follows:
nyc$group_by(
"passenger_count"
)$agg(
pl$col("tip_amount")$mean()$alias("mean_tip")
)$sort("passenger_count")(Note: this is the naive query plan, not the optimized query that polars will actually implement for us. We’ll come back to this idea shortly.)
Calling collect() enforces computation.
tic = time.time()
dat1 = q1.collect()
toc = time.time()
dat1| passenger_count | tip_amount |
|---|---|
| i8 | f32 |
| -127 | 0.5 |
| -123 | 0.0 |
| -122 | 5.0 |
| -119 | 9.0 |
| -115 | 2.0 |
| … | … |
| 70 | 0.0 |
| 84 | 5.0 |
| 97 | 2.0 |
| 113 | 0.0 |
| 125 | 2.0 |
# print(f"Time difference of {toc - tic} seconds")tic = Sys.time()
dat1 = q1$collect()
toc = Sys.time()
dat1| passenger_count | tip_amount |
|---|---|
| i8 | f32 |
| -127 | 0.5 |
| -123 | 0.0 |
| -122 | 5.0 |
| -119 | 9.0 |
| -115 | 2.0 |
| … | … |
| 70 | 0.0 |
| 84 | 5.0 |
| 97 | 2.0 |
| 113 | 0.0 |
| 125 | 2.0 |
toc - ticTime difference of 0.872997 secs
Aggregation
Subsetting along partition dimensions allows for even more efficiency gains.
q2 = (
nyc
.filter(pl.col("month") <= 3)
.group_by(["month", "passenger_count"])
.agg([pl.mean("tip_amount").alias("mean_tip")])
.sort("passenger_count")
)q2 = (
nyc
$filter(pl$col("month") <= 3)
$group_by("month", "passenger_count")
$agg(pl$col("tip_amount")$mean()$alias("mean_tip"))
$sort("passenger_count")
) Let’s take a look at the optimized query that Polars will implement for us.
# q2 # naive
# q2.show_graph() # optimized# q2 # naive
cat(q2$explain()) # optimizedSORT BY [col("passenger_count")]
AGGREGATE[maintain_order: false]
[col("tip_amount").mean().alias("mean_tip")] BY [col("month"), col("passenger_count")]
FROM
Parquet SCAN [nyc-taxi/2009/month=01/data.parquet, ... 10 other sources]
PROJECT 3/19 COLUMNS
SELECTION: [(col("month").cast(Float64)) <= (3.0)]
ESTIMATED ROWS: 155016543
Now, let’s run the query and collect the results.
tic = time.time()
dat2 = q2.collect()
toc = time.time()
dat2| month | passenger_count | mean_tip |
|---|---|---|
| i64 | i8 | f32 |
| 2 | -127 | 0.5 |
| 1 | -48 | 0.0 |
| 2 | -48 | 0.0 |
| 3 | -48 | 0.496447 |
| 1 | -45 | 2.0 |
| … | … | … |
| 1 | 49 | 0.0 |
| 3 | 61 | 4.34 |
| 1 | 65 | 0.0 |
| 2 | 97 | 2.0 |
| 1 | 113 | 0.0 |
# print(f"Time difference of {toc - tic} seconds")tic = Sys.time()
dat2 = q2$collect()
toc = Sys.time()
dat2| month | passenger_count | mean_tip |
|---|---|---|
| i64 | i8 | f32 |
| 2 | -127 | 0.5 |
| 1 | -48 | 0.0 |
| 2 | -48 | 0.0 |
| 3 | -48 | 0.496447 |
| 1 | -45 | 2.0 |
| … | … | … |
| 1 | 49 | 0.0 |
| 3 | 61 | 4.34 |
| 1 | 65 | 0.0 |
| 2 | 97 | 2.0 |
| 1 | 113 | 0.0 |
toc - ticTime difference of 0.5320392 secs
High-dimensional grouping example. This query provides an example where polars is noticeably slower than DuckDB.
q3 = (
nyc
.group_by(["passenger_count", "trip_distance"])
.agg([
pl.mean("tip_amount").alias("mean_tip"),
pl.mean("fare_amount").alias("mean_fare"),
])
.sort(["passenger_count", "trip_distance"])
)
tic = time.time()
dat3 = q3.collect()
toc = time.time()
dat3| passenger_count | trip_distance | mean_tip | mean_fare |
|---|---|---|---|
| i8 | f32 | f32 | f32 |
| -127 | 0.34 | 0.0 | 5.7 |
| -127 | 0.71 | 0.0 | 4.5 |
| -127 | 1.22 | 1.0 | 5.7 |
| -127 | 1.37 | 0.0 | 9.3 |
| -127 | 2.55 | 0.0 | 8.5 |
| … | … | … | … |
| 70 | 3.06 | 0.0 | 9.7 |
| 84 | 13.98 | 5.0 | 33.700001 |
| 97 | 1.87 | 2.0 | 6.9 |
| 113 | 0.0 | 0.0 | 13.3 |
| 125 | 3.83 | 2.0 | 14.1 |
# print(f"Time difference of {toc - tic} seconds")q3 = (
nyc
$group_by("passenger_count", "trip_distance")
$agg(
pl$col("tip_amount")$mean()$alias("mean_tip"),
pl$col("tip_amount")$mean()$alias("mean_fare")
)
$sort("passenger_count", "trip_distance")
)
tic = Sys.time()
dat3 = q3$collect()
toc = Sys.time()
dat3| passenger_count | trip_distance | mean_tip | mean_fare |
|---|---|---|---|
| i8 | f32 | f32 | f32 |
| -127 | 0.34 | 0.0 | 0.0 |
| -127 | 0.71 | 0.0 | 0.0 |
| -127 | 1.22 | 1.0 | 1.0 |
| -127 | 1.37 | 0.0 | 0.0 |
| -127 | 2.55 | 0.0 | 0.0 |
| … | … | … | … |
| 70 | 3.06 | 0.0 | 0.0 |
| 84 | 13.98 | 5.0 | 5.0 |
| 97 | 1.87 | 2.0 | 2.0 |
| 113 | 0.0 | 0.0 | 0.0 |
| 125 | 3.83 | 2.0 | 2.0 |
toc - ticTime difference of 23.48908 secs
As an aside, if we didn’t care about column aliases (or sorting), then the previous query could be shortened to:
(
nyc
.group_by(["passenger_count", "trip_distance"])
.agg(pl.col(["tip_amount", "fare_amount"]).mean())
.collect()
)(
nyc
$group_by("passenger_count", "trip_distance")
$agg(pl$col("tip_amount", "fare_amount")$mean())
$collect()
)Pivot (reshape)
In polars, we have two distinct reshape methods:
pivot: => long to wideunpivot: => wide to long
Here we’ll unpivot to go from wide to long and use the eager execution engine (i.e., on the dat3 DataFrame object that we’ve already computed) for expediency.
dat3.unpivot(index = ["passenger_count", "trip_distance"])| passenger_count | trip_distance | variable | value |
|---|---|---|---|
| i8 | f32 | str | f32 |
| -127 | 0.34 | "mean_tip" | 0.0 |
| -127 | 0.71 | "mean_tip" | 0.0 |
| -127 | 1.22 | "mean_tip" | 1.0 |
| -127 | 1.37 | "mean_tip" | 0.0 |
| -127 | 2.55 | "mean_tip" | 0.0 |
| … | … | … | … |
| 70 | 3.06 | "mean_fare" | 9.7 |
| 84 | 13.98 | "mean_fare" | 33.700001 |
| 97 | 1.87 | "mean_fare" | 6.9 |
| 113 | 0.0 | "mean_fare" | 13.3 |
| 125 | 3.83 | "mean_fare" | 14.1 |
dat3$unpivot(index = c("passenger_count", "trip_distance"))| passenger_count | trip_distance | variable | value |
|---|---|---|---|
| i8 | f32 | str | f32 |
| -127 | 0.34 | "mean_tip" | 0.0 |
| -127 | 0.71 | "mean_tip" | 0.0 |
| -127 | 1.22 | "mean_tip" | 1.0 |
| -127 | 1.37 | "mean_tip" | 0.0 |
| -127 | 2.55 | "mean_tip" | 0.0 |
| … | … | … | … |
| 70 | 3.06 | "mean_fare" | 0.0 |
| 84 | 13.98 | "mean_fare" | 5.0 |
| 97 | 1.87 | "mean_fare" | 2.0 |
| 113 | 0.0 | "mean_fare" | 0.0 |
| 125 | 3.83 | "mean_fare" | 2.0 |
Joins (merges)
mean_tips = nyc.group_by("month").agg(pl.col("tip_amount").mean())
mean_fares = nyc.group_by("month").agg(pl.col("fare_amount").mean())(
mean_tips
.join(
mean_fares,
on = "month",
how = "left" # default is inner join
)
.collect()
)| month | tip_amount | fare_amount |
|---|---|---|
| i64 | f32 | f32 |
| 4 | 0.814566 | 10.054076 |
| 12 | 0.819398 | 10.186188 |
| 7 | 0.778278 | 10.076624 |
| 8 | 0.783877 | 10.118335 |
| 2 | 0.828546 | 9.804122 |
| … | … | … |
| 6 | 0.7862 | 10.154768 |
| 9 | 0.824009 | 10.337792 |
| 5 | 0.840874 | 10.272066 |
| 3 | 0.853446 | 10.045835 |
| 10 | 0.821033 | 10.198154 |
mean_tips = nyc$group_by("month")$agg(pl$col("tip_amount")$mean())
mean_fares = nyc$group_by("month")$agg(pl$col("fare_amount")$mean())(
mean_tips
$join(
mean_fares,
on = "month",
how = "left" # default is inner join
)
$collect()
)| month | tip_amount | fare_amount |
|---|---|---|
| i64 | f32 | f32 |
| 8 | 0.783877 | 10.118335 |
| 6 | 0.7862 | 10.154768 |
| 1 | 0.753412 | 9.621945 |
| 4 | 0.814566 | 10.054076 |
| 3 | 0.853446 | 10.045835 |
| … | … | … |
| 5 | 0.840874 | 10.272066 |
| 10 | 0.821033 | 10.198154 |
| 2 | 0.828546 | 9.804122 |
| 11 | 0.834024 | 10.209248 |
| 12 | 0.819398 | 10.186188 |
Appendix: Alternate interfaces
The native polars API is not the only way to interface with the underlying computation engine. Here are two alternate approaches that you may prefer, especially if you don’t want to learn a new syntax.
Ibis (Python)
The great advantage of Ibis (like dbplyr) is that it supports multiple backends through an identical frontend. So, all of our syntax logic and workflow from the Ibis+DuckDB section carry over to an equivalent Ibis+Polars workflow too. All you need to do is change the connection type. For example:
import ibis
import ibis.selectors as s
from ibis import _
##! This next line is the only thing that's changed !##
con = ibis.polars.connect()
con.read_parquet("nyc-taxi/**/*.parquet", table_name = "nyc")DatabaseTable: nyc
vendor_id string
pickup_at timestamp(9)
dropoff_at timestamp(9)
passenger_count int8
trip_distance float32
pickup_longitude float32
pickup_latitude float32
rate_code_id null
store_and_fwd_flag string
dropoff_longitude float32
dropoff_latitude float32
payment_type string
fare_amount float32
extra float32
mta_tax float32
tip_amount float32
tolls_amount float32
total_amount float32
nyc = con.table("nyc")
(
nyc
.group_by(["passenger_count"])
.agg(mean_tip = _.tip_amount.mean())
.to_polars()
)shape: (53, 2)
┌─────────────────┬───────────┐
│ passenger_count ┆ mean_tip │
│ --- ┆ --- │
│ i8 ┆ f64 │
╞═════════════════╪═══════════╡
│ 8 ┆ 0.15 │
│ 66 ┆ 1.5 │
│ 15 ┆ 2.0 │
│ -96 ┆ 2.0 │
│ -48 ┆ 0.433162 │
│ … ┆ … │
│ 47 ┆ 0.0 │
│ 65 ┆ 0.0 │
│ 69 ┆ 0.0 │
│ -101 ┆ 46.599998 │
│ 84 ┆ 5.0 │
└─────────────────┴───────────┘
tidypolars (R)
The R package tidypolars (link) provides the “tidyverse” syntax while using polars as backend. The syntax and workflow should thus be immediately familar to R users.
It’s important to note that tidypolars is solely focused on the translation work. This means that you still need to load the main polars library alongside it for the actual computation, as well as dplyr (and potentially tidyr) for function generics.
library(polars) ## Already loaded
library(tidypolars)Warning: package 'tidypolars' was built under R version 4.5.2
library(dplyr, warn.conflicts = FALSE)
library(tidyr, warn.conflicts = FALSE)
nyc = scan_parquet_polars("nyc-taxi/**/*.parquet")
nyc |>
summarise(mean_tip = mean(tip_amount), .by = passenger_count) |>
compute()| passenger_count | mean_tip |
|---|---|
| i8 | f32 |
| 6 | 0.923139 |
| -122 | 5.0 |
| 33 | 1.0 |
| 36 | 11.25 |
| 15 | 2.0 |
| … | … |
| -45 | 2.0 |
| 125 | 2.0 |
| 113 | 0.0 |
| -6 | 0.333333 |
| -33 | 1.5 |
Aside: Use collect() instead of compute() at the end if you would prefer to return a standard R data.frame instead of a Polars DataFrame.
See also polarssql (link) if you would like yet another “tidyverse”-esque alternative that works through DBI/d(b)plyr.