Examples

Examples

Estimating Means of a bivariate normal

Let's define a function that returns a Normal distribution with a certain location, and let's call this our model:

\[m(p) = \mathcal{N}\left( [p_1,p_2]^T , I_2 \right)\]

Our aim will be to estimate the location of two means from data that is simulated from this law with an MCMC chain, given some true $p$. (Of course the sample mean would be a perfectly valid estimator.) The twist here is that we will pretend that we don't have access to the entire simulated dataset

\[\{X_i\}_{i=1}^N, X_i = (x_{i1},x_{i2}) \sim m(p),\]

but only a set of summary statistics $S$ - in our case, we'd have two moments of this data, namely $\mu_j = \frac{1}{N}x_{ij},j=1,2$. Our objective function is the squared distance between $\mu$, and what our model produces instead. That is, we give a parameter vector $p'$ to our model $m$, which in turn produces 2 simulated moments denoted $\mu'$. Finally, we assess their respective distance - we want to eventuall find $p' \approx p$.

Again:

  1. Assume true moments $\mu$ (and, hence, true $p$)
  2. repeatedly create data from $m(p')$ for different $p'$ drawn from a space $[-3,3] \times [-2,2]$. For each dataset, compute $\mu_j' = \frac{1}{N}x_{ij},j=1,2$.
  3. Compute distance $\mu,\mu'$ and decide according to the MomentOpt.MAlgoBGP algorithm whether to accept or reject current $p'$.
julia> using MomentOpt
julia> pb    = OrderedDict("p1" => [0.2,-3,3] , "p2" => [-0.2,-2,2] )  # param spaces
julia> moms  = DataFrame(name=["mu1","mu2"],value=[-1.0,1.0],weight=ones(2))  # truth
julia> mprob = MProb() 
julia> addSampledParam!(mprob,pb) 
julia> addMoment!(mprob,moms) 
julia> addEvalFunc!(mprob,objfunc_norm)

julia> nchains = 3

julia> opts =Dict("N"=>nchains,
    "maxiter"=> 10,
    "maxtemp"=> 5,
    "coverage"=>0.025,
    "sigma_update_steps"=>10, 
    "sigma_adjust_by"=>0.01, 
    "smpl_iters"=>1000,
    "parallel"=>true, 
    "min_improve"=>[0.05 for i in 1:nchains], 
    "mixprob"=>0.3, 
    "acc_tuners"=>[12.0 for i in 1:nchains], 
    "animate"=>false)

julia> MA = MAlgoBGP(mprob,opts)

BGP Algorithm with 3 BGPChains
============================

Algorithm
---------
Current iteration: 0
Number of params to estimate: 2
Number of moments to match: 2

julia> runMOpt!(MA)
[ Info: Starting estimation loop.
Progress: 100%|████████████████████████████████████████| Time: 0:00:04
┌ Warning: could not find 'filename' in algo.opts
└ @ MomentOpt ~/.julia/v0.6/MomentOpt/src/mopt/AlgoAbstract.jl:69
[ Info: Done with estimation after 0.1 minutes

Full list of options is available at the MomentOpt.BGPChain documentation

Diagnostic tools

For this running example, here are a couple of plots that can easily be generated with the package.

1. Objective function and param values history

2. Histograms of parameter values

Plot a histogram of all accepted parameter values:

histogram(MA.chains[1])

3. Slices through objective and moment functions

This can be generated via

s = doSlices(mprob,30)
plot(s,:value)  # plot objective function over param values
plot(s,:mu1)  # plot value of moment :mu1 over param values
plot(s,:mu2)  # plot value of moment :mu2 over param values

The moment function plots show with red dashes the true moment value, and how the corresponding simulated moment changes as we move parameter $p$. This basically illustrates how and whether moment $m_i$ contributes to the identification of the model.

moment function m1

moment function m2

Finally, the slice through the objective function illustrates whether we attain a local maximum (in this case at the true parameter values $p = (-1,1)$).

slices

4. Tracking proposals

opts =Dict("N"=>nchains,
    "maxiter"=>200,
    "maxtemp"=> 5,
    "smpl_iters"=>1000,
    "parallel"=>false,
    "min_improve"=>[0.0 for i in 1:nchains],
    "acc_tuners"=>[20;2;1.0],
    "animate"=>true)

In the current example, this yields

proposals