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a b s t r a c t

This note tests the assumption of dynamic discrete choice models that underlying utility shocks have an
extreme value type I distribution. We find that extreme value type I shocks cannot be rejected in most
specifications of the Rust (1987) bus engine replacement model.
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1. Introduction

In dynamic discrete choice models, by far the most common
distributional assumption for the unobserved, random component
of utility is that it is drawn from the extreme value type I
distribution (see the recent survey by Aguirregabiria and Mira,
2010). This assumption is not based on theory, but rather on
computational convenience, and perhaps justifiably so: dynamic
discrete choicemodels can be difficult to estimate, and the extreme
value assumption reduces an important dimension of complexity
by yielding closed-form solutions for choice probabilities as well
as for value functions.

In spite of its prevalence, the extreme value assumption of
discrete choice models has rarely been tested. It is our belief that
it is important to test the sensitivity of econometric models to its
assumptions, whether these assumptions are made for theoretical
or computational reasons. This work contributes to the literature
by testing the extreme value assumption in the now well-known
engine replacement model of Rust (1987), a pioneering paper in
dynamic discrete choice.

It is important to note that McFadden and Train (2000) show
that any randomutilitymodel, such as in static demand estimation,
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can be approximated arbitrarily closely using the extreme value
type I distribution for the idiosyncratic component of utility as long
as the model includes a sufficiently flexible mixing distribution of
random coefficients.With the Rust (1987)model, however, aswith
many other dynamic discrete choice settings, there are no random
coefficients and the only source of uncertainty is the extreme
value type I error, and hence the extreme value assumption may
potentially be restrictive.

With the original data from Rust’s paper, we use constrained
optimization and numerical quadrature rules to test the extreme
value distribution against several flexible distributions of the
exponentiated generalized beta family, which nest the extreme
value distribution as a special case. We find, surprisingly, that
in most cases, the hypothesis of extreme value errors cannot
be rejected, suggesting that, in Rust’s data and model, the
extreme value assumption, while useful from a computational
standpoint, may also be a reasonable modeling assumption. When
the assumption can be rejected at marginally significant levels, we
demonstrate the implications which our adaptive estimation has
for the model.

2. The bus engine replacement model

In the engine replacement model of Rust (1987), a single agent
decides each period whether or not to replace a bus engine. The
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agent’s per-period utility is

u(xt , i, θ)+ εt(i) =


−RC − c(0, θ1)+ εt(1) if i = 1,
−c(xt , θ1)+ εt(0) if i = 0,

where i = 1 represents the agent’s decision to replace the engine
and i = 0 the decision to not replace. xt is the engine’s mileage
at time t , discretized into 90 mileage bins, and εt(i) is a choice-
specific shock to utility (observable to the agent but not to the
econometrician). RC (replacement cost) and θ1 (regular mainte-
nance cost) are two of the parameters to be estimated. The function
c(x, θ1) represents the costs ofmaintenance on an enginewith cur-
rent mileage x. As in the main specification of Rust (1987), we take
c(x, θ1) = 0.001θ1x.

When the agent discounts future utility with discount factor β ,
the agent’s value function can be written as
Vθ (xt , εt) = max

i∈{0,1}
u(xt , i, θ)+ εt(i)+ βE [Vθ (xt+1, εt+1)|xt , i]

where the subscript θ is used to denote the dependence of the
value function on the full parameter vector, θ , which includes
RC and θ1, as well as θ2, which represents any parameters of
the unobserved error distribution, and θ3, which represents the
parameters of the mileage transition probability.

The expected continuation value can be written as
E [Vθ (xt+1, εt+1)|xt , i]

=


xt+1


Et+1

Vθ (xt+1, εt+1)P(dxt+1, dεt+1|xt , i, θ) (1)

where
P(xt+1, εt+1|xt , i, θ) = q(εt+1|θ2)p(xt+1|xt , i, θ3)
with the mileage transition probability defined in θ3, a three-
element vector given by

p(xt+1|xt , i, θ3) =


θ30 if xt+1 = xt
θ31 if xt+1 = xt + 1
θ32 if xt+1 = xt + 2.

Now let mit ≡ u(xt , i, θ) + βE [Vθ (xt+1, εt+1)|xt , i]. Also, let
ηt = εt(1) − εt(0). Then, under the assumption that εt+1 has an
extreme value type I distribution, ηt will be distributed logistically.
Thus the probability that the agent chooses to not replace the
engine in mileage state xt is given by the familiar logit formula

Pr(it = 0|xt , θ) =
1

1 + e−(m0t−m1t )

= F(m0t − m1t , θ2).

F(·, θ2) denotes the logistic distribution, with scale and location
parameters normalized, and hence θ2 is empty. Below we will
discuss more general distributions which do include parameters
contained in θ2.

Also note that
Et

Vθ (xt , εt)q(εt |θ2)dεt

= m0tF(m0t − m1t , θ2)+ m1t(1 − F(m0t − m1t , θ2))

+ E[ηt |ηt > m0t − m1t ](1 − F(m0t − m1t , θ2))

= ln(em0t + em1t ) (2)
where the final line follows from the closed-form solution of
the maximum of random variables with an extreme value type I
distribution, familiar from the discrete choice literature.

The likelihood function of an observed sequence of mileage
states and decisions,


{xt}Tt=1, {it}

T
t=1


, for a particular bus is given

by

L

{xt}Tt=1, {it}

T
t=1|x0, i0, θ


=

T
t=1

P(it |xt , θ)p(xt |xt−1, it−1, θ3) (3)

which can be maximized using the constrained maximization
procedure described below.
3. Estimation

We solve for the model’s parameters following the ‘‘mathe-
matical program with equilibrium constraints’’ (MPEC) approach
proposed by Judd and Su (2011). That is, we maximize the
likelihood in (3) subject to (1) holding at each state x. As in Rust
(1987), we use a discount factor of β = 0.9999.

To test the assumption that (εt(0), εt(1)) have an extreme
value type I distribution, we choose distributions of ηt which
nest the logistic distribution. Specifically, we choose the family
of distributions nested by the exponentiated generalized beta
distribution of the second kind (EGB2). The EGB2 has the following
CDF and density:

FEGB2(η; p, q) = B


1

1 + eη+ψ(p)−ψ(q)
; p, q


fEGB2(η; p, q) =

ep(η+ψ(p)−ψ(q))

B(p, q)(1 + eη+ψ(p)−ψ(q))p+q

where p and q are distributional parameters determining the shape
(skewness and kurtosis) of the distribution, ψ is the digamma
function (the first derivative of the log of the gamma function), and
B(p, q) is the beta function. Finally,B(·; p, q) is the incomplete beta
function.

Through the parameters p and q, the EGB2 distribution allows
for a wide range of standardized skewness ([−2, 2]) and standard-
ized kurtosis ([3, 9]), as shown in Hansen et al. (2007). The logistic
distribution is a special case of the EGB2, with p = q = 1, and
allows for zero skewness and only one level of kurtosis (a value
of 4.2). Formulas for the skewness and kurtosis of the EBG2 are
found in McDonald and Xu (1995).

Two special cases of the EGB2 which nest the logistic distribu-
tion while still being flexible are the exponentiated Burr type 3
distribution (EBurr3), given by FEGB2(·; p = 1, q), and the expo-
nentiated Burr type 12 distribution (EBurr12), given by FEGB2(·; p,
q = 1). These latter twodistributions have convenient closed-form
CDFs found in Hansen and McDonald (2002).

However, unlike with the logistic distribution, the truncated
expectation, E[ηt |ηt > m0t − m1t ], found in (2), does not have a
closed-form solution under these more flexible distributions. We
evaluate this object using Gauss–Laguerre quadrature (see Kythe
and Schäferkotter, 2005 for details). As demonstrated below, we
find this method to be highly accurate.

4. Results

Weuse the original data fromRust (1987). This data set consists
ofmany buses, eachwithmonthly data onmileage readings aswell
as the agent’s decision to replace the engine or not. The buses are
divided into four groups based on their characteristics. See Rust
(1987) for more details on the data.

We first replicated the Rust (1987) results using the closed-
form which arises from the extreme value type I assumption. We
then performed the same estimation but with Gauss–Laguerre
quadrature, using 100 Laguerre nodes, rather than using the
closed-form solution. The results of these replication exercises for
bus groups 1–3 are displayed in Table 1 in the columns labeled
‘‘Closed-form’’ and ‘‘Gauss–Laguerre’’. The results from Rust (1987,
Table IX), are also displayed for comparison.1 As can be seen, the
numerical quadrature results agree with the closed-form solution,
and our results replicate Rust’s quite closely.

To test the extreme value assumption, we estimate the model
using each distribution described above and perform a likelihood
ratio test. Table 2 shows the results, with a separate panel for the
sample containing bus groups 1–3, bus group 4 alone, and bus
groups 1–4. Note that the mileage transition parameters, θ30 and

1 Rust (1987) standard errors come from the outer product of the gradient. All
other standard errors are bootstrapped at the bus level.
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Table 1
Replication of the original results from Rust (1987, Table IX).

Bus groups 1–3 (N = 3864)
(Rust, 1987) Closed-form Gauss–Laguerre

RC 11.7270 11.7194 11.7176
(2.602) (1.975) (1.992)

θ1 4.8259 4.8204 4.8191
(1.792) (1.340) (1.357)

θ30 0.3010 0.3010 0.3010
(0.007) (0.009) (0.009)

θ31 0.6884 0.6884 0.6884
(0.008) (0.009) (0.009)

L −2708.366 −2708.366 −2708.366

θ31, are omitted from Table 2 because they do not depend on the
distributional assumption of ηt .

In Table 2, note that the parameter estimates vary slightly
depending on the distributional assumption used. For example, in
each panel, the replacement cost (RC) is nearly the same across
distributions. The regular maintenance cost, θ1, on the other hand,
is approximately twice as large under the logistic assumption as
it is under EBurr12. However, in each case a Hausman test fails to
reject when comparing θ1 and RC under the logistic assumption to
each of the flexible distributions, as shown in the final column of
each panel.

Observe that the flexible distributions pick up some positive
skewness. In other words, the distribution of the unobserved
component of utility appears to be skewed to the right, or have a
long right tail, having relatively few high values and having more
mass concentrated at the left of the distribution. Recalling that
this is the distribution of ηt = εt(1)− εt(0), this implies that large
shocks to utility favoring engine replacement are less likely to occur
than would be predicted by the assumption that (εt(0), εt(1))
has an extreme value type I distribution. Table 2 displays mild
differences in kurtosis as well.

Observe, however, that the p value from the likelihood ratio
(LR) test would not allow one to reject the extreme value type I
(or here, the logistic) assumption at conventional (5%) levels. This
suggests that the extreme value assumption may be appropriate
for this data set and model.

Only in the final panel of Table 2, bus groups 1–4, when
comparing the logistic and EBurr3 distributions, does the LR test
yield a marginally significant p value of 0.0725. If the hypothesis
of extreme value errors could be rejected, it would be interesting
Table 2
Estimation with flexible distributions.

Bus groups 1–3 (N = 3864)
Logistic EBurr3 EBurr12 EGB2

RC 11.7176 12.1668 11.9838 12.5549
(1.992) (2.047) (2.024) (2.758)

θ1 4.8191 2.9529 4.5258 2.6408
(1.357) (1.316) (1.310) (1.359)

Skewness 0 0.6077 0.0747 0.6982
(0.272) (0.104) (0.279)

Kurtosis 4.2 4.3652 4.2439 4.5422
(0.226) (0.042) (0.393)

Log-likelihood −2708.366 −2707.865 −2708.321 −2707.851
LR test p value 0.3169 0.7623 0.5971
Hausman test p
value

0.8390 0.9872 0.1506

Bus group 4 (N = 4292)
RC 10.0732 10.1709 10.1599 10.0567

(1.378) (1.510) (1.366) (2.465)
θ1 2.2923 1.4652 2.2107 1.5443

(0.574) (1.067) (0.606) (1.637)
Skewness 0 0.3143 0.0278 0.2844

(0.343) (0.044) (0.511)
Kurtosis 4.2 4.1631 4.2149 4.1273

(0.184) (0.024) (0.631)
Log-likelihood −3304.155 −3304.054 −3304.145 −3304.048
LR test p value 0.6530 0.8900 0.8988
Hausman test p
value

0.7744 1.0000 0.5100

Bus groups 1–4 (N = 8156)
RC 9.7541 10.0752 9.9865 10.2604

(0.776) (0.909) (0.788) (1.103)
θ1 2.6266 0.9671 2.3790 0.8456

(0.488) (0.530) (0.494) (0.607)
Skewness 0 0.6653 0.0761 0.7166

(0.130) (0.022) (0.202)
Kurtosis 4.2 4.4341 4.2448 4.5361

(0.158) (0.014) (0.355)
Log-likelihood −6055.250 −6053.638 −6055.099 −6053.629
LR test p value 0.0725 0.5818 0.1975
Hausman test p
value

0.9693 0.9995 0.6799

to identify the effects of this distributional assumption on the
model. For this purpose, we examine more closely the estimated
conditional choice probabilities for bus groups 1–4 under the
logistic distribution and under EBurr3, shown in Fig. 1.
(a) Absolute probabilities. (b) Relative probabilities.

Fig. 1. Conditional choice probabilities of engine replacement at each mileage state under the logistic versus the EBurr3 distribution (bus groups 1–4).
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Observe in Fig. 1, panel (a), that at low mileage states, the
two distributions predict similar absolute probabilities of engine
replacement. At high mileage states (which are not reached as
often in the data), the logistic distribution predicts a much higher
likelihood of engine replacement than does EBurr3. This result
may arise because engine replacement rarely occurs, and, being
a tail occurrence, is predicted differently by the flexible EBurr3
distribution and by the logistic distribution. The plot of the relative
probabilities in panel (b) demonstrates that at some mid-level
mileage states, EBurr3 does predict a slightly higher replacement
probability. Panel (b) also reveals that at many mileage states,
particularly low and high mileage states, the 95% confidence
interval of the relative probabilities (marked by the dashed lines)
does not contain unity, meaning that the choice probabilities differ
significantly from one another.

5. Conclusion

This work tests an assumption which is extremely common
in dynamic (and static) discrete choice estimation: that the
unobserved component of utility is distributed according to an
extreme value type I distribution. This assumption is not made
for theoretical reasons but rather because it yields closed-form
solutions for choice probabilities and for expected continuation
values. If the assumption is harmless, its usefulness makes it an
excellentmodeling choice. If, however, themodel is quite sensitive
to the distribution of unobserved shocks, researchers should be
aware of this and consider these sensitivities.

Although the results of this work are only for one particu-
lar example, the procedure could be followed for other dynamic
binary choice models. In particular, we demonstrate that without
the closed-form solutions provided by the extreme value type I
distribution, Gauss–Laguerre integration can be easily and accu-
rately performed. Also, this work only considers a dynamic binary
choice model, but similar approaches using numerical cubature
rules could be applied to dynamic choicemodelswithmultiple dis-
crete choices.
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