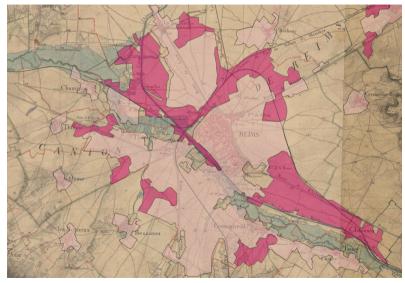
Structural Change, Land Use and Urban Expansion

Nicolas Coeurdacier (SciencesPo & CEPR)

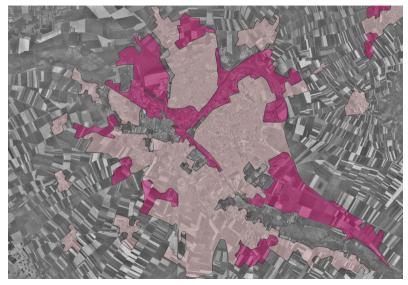
Florian Oswald (U. Turin)

Marc Teignier (U. Barcelona)

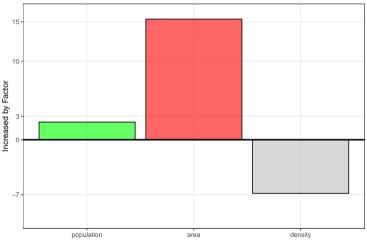
A D > A B > A B > A B >


1/40

Manchester, November 2024


Motivation: Reims in 1866

Motivation: Reims in 1866 vs IGN Buildings in 2017



Motivation: Reims in 1950 vs IGN Buildings in 2017

Motivation: Fall in Urban Density

Reims from 1866 to 2015

- 50% work in Agriculture in 1866, 2% in 2015.
- Urban Surface increased about 15 fold.
- Density fell about 7 fold.

Urban Expansion: Different Views

- 1. Urban Economics:
 - Decline in commuting cost over time allows residing further away from city centre.
 - ▶ New technologies (♣ 🚎 💄) enable suburbanisation. 🏠

Urban Expansion: Different Views

- 1. Urban Economics:
 - Decline in commuting cost over time allows residing further away from city centre.
 - ▶ New technologies (♣ 🥽 💂) enable suburbanisation. 🏠
- 2. Structural Change:
 - Food subsistence constraint for bigger houses. (No need to commute to large suburban houses.)
 - ► Agricultural productivity growth solves food problem, land values . City can expand easily to accomodate greater housing demand. Urban Density falls .

Urban Expansion: Different Views

- 1. Urban Economics:
 - Decline in commuting cost over time allows residing further away from city centre.
 - ▶ New technologies (♣ 🐖 💂) enable suburbanisation. 🏠
- 2. Structural Change:
 - Food subsistence constraint for bigger houses. (No need to commute to large suburban houses.)
 - Agricultural productivity growth solves food problem, land values U. City can expand easily to accomodate greater housing demand. Urban Density falls .

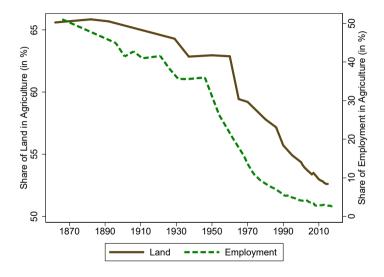
This paper: Try to reconcile 💝 both views in a unified framework.

Related literature

(Traditional) Macro and Land Values

 Ricardo (1817), Nichols (1970), Grossman and Steger (2016). Measurement. Morris and Heathcote (2007), Piketty and Zucman (2014), Knoll, Schularick and Steger (2017), Miles and Sefton (2020)

(Macro) Structural Change

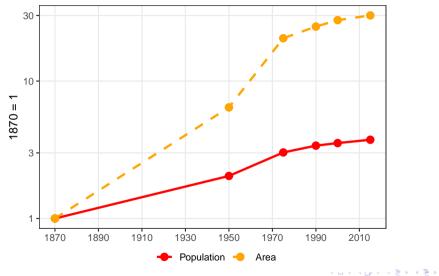

- Survey: Herrendorf, Rogerson and Valentinyi (2014). Theory: Kongsamut et al. (2001), Gollin et al. (2002), Boppart (2014), Acemoglu and Guerrieri (2008), Ngai and Pissarides (2007)...
 Structural change and urbanization. Lewis (1954), Michaels et al. (2012). Eckert and Peters (2018).
- Agricultural Productivity Gap. Gollin et al. (2014), Lagakos and Waugh (2013), Young (2013), Restuccia et al. (2008).

Urban — Size and Expansion of Cities

- Theory. Alonso-Mills-Muth. Surveys by Duranton and Puga (2014, 2015). Brueckner (1990), Brueckner and Lall (2014), ...
 Quantitative Spatial Economics. Redding and Rossi-Hansberg (2017). Sprawl/Density. Glaeser et al., Ahlfeldt et al. (2015), Angel et al. (2010)
- Land Prices and Rents. Combes et al. (2021), Combes et al. (mimeo 2021), Albouy (et al.) (2016, 2018), Glaeser et al. (2005).

Urban Expansion in France: Facts

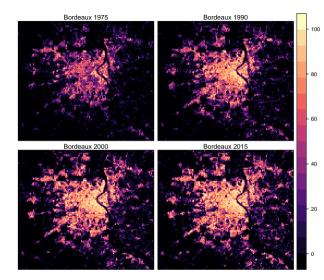
Land and labor reallocation: Aggregate France



Sources:

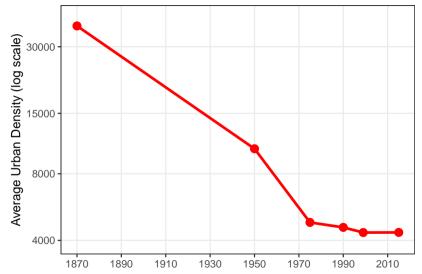
- 1. Toutain (1993)
- 2. Recensement Agricole (Ministry of Agriculture)
- 3. INSEE
- 4. Villa (1996)

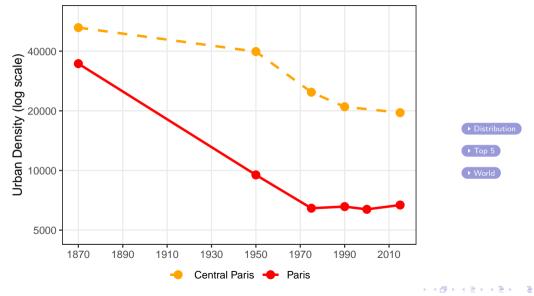
Urban Expansion


Top 100 Cities in France

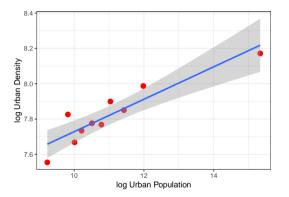
10 / 40

æ

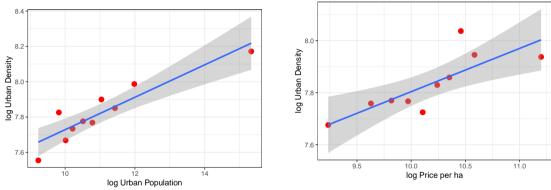

City Area and Population Measurement


- 1866: Manual + Census
- 1950: Manual + Census
- 1975, 1990, 2000, 2015: GHSL

More details please!


The Historical Fall in French Urban Density

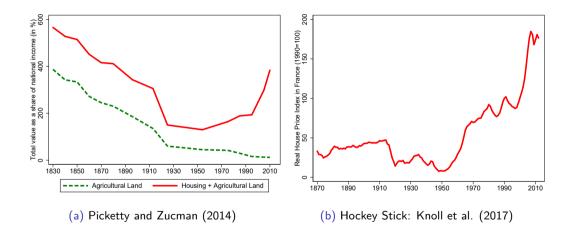
The Historical Fall in Urban Density: Within Paris



Urban Density vs Farmland Price and Population (year 2000)

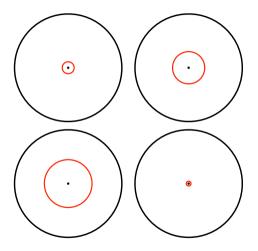
Well known: More populated cities are denser on average.

Urban Density vs Farmland Price and Population (year 2000)

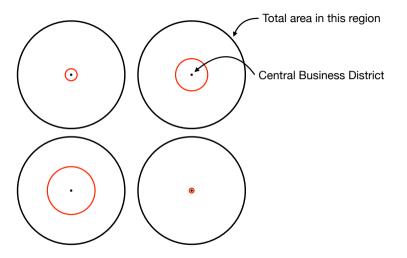


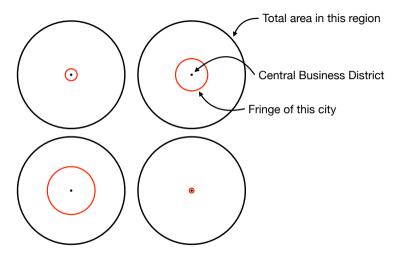
Well known: More populated cities are denser on average.

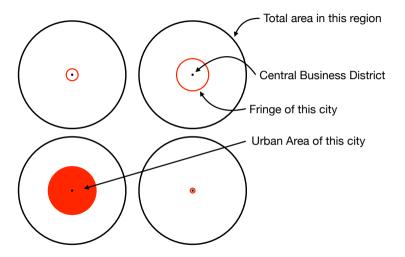
Less known: surrounding farmland and density are positively correlated.

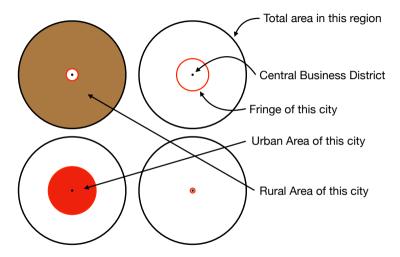

▶ Fringe Land Use?


Fall in Agricultural Value Share and Hockey-stick in Housing Prices




Model


・ロト ・日ト ・ヨト ・ヨト ・ヨー うへで



Economy consists of K regions of identical circular shape, but different productivities in their rural (r) and urban (u) sectors. At the center of each region k lies a single city.

- Economy consists of K regions of identical circular shape, but different productivities in their rural (r) and urban (u) sectors. At the center of each region k lies a single city.
 - Different intensity in the use of land as input
 - Rival Land Use: Agriculture or Housing
 - Fixed Supply of Land

- Economy consists of K regions of identical circular shape, but different productivities in their rural (r) and urban (u) sectors. At the center of each region k lies a single city.
 - Different intensity in the use of land as input
 - Rival Land Use: Agriculture or Housing
 - Fixed Supply of Land
- ▶ Urban versus Rural Land: (Endogenous) commuting costs for urban workers.

- Economy consists of K regions of identical circular shape, but different productivities in their rural (r) and urban (u) sectors. At the center of each region k lies a single city.
 - Different intensity in the use of land as input
 - Rival Land Use: Agriculture or Housing
 - Fixed Supply of Land
- ▶ Urban versus Rural Land: (Endogenous) commuting costs for urban workers.
- Drivers of Structural Change
 - Non-homothetic preferences for the rural good.
 - Increases in productivity during transition.

Technology

Urban, Rural goods and Housing Production

For the urban good, only labor for simplicity,

$$Y_{u,k} = \frac{\theta_{u,k}}{L_{u,k}}.$$

► For the rural good,

$$Y_{r,k} = \frac{\theta_{r,k}}{\left(L_{r,k}^{\alpha} \cdot S_{r,k}^{1-\alpha}\right)}.$$

• $\theta_{i,k} = \text{TFP}$ in sector *i*, $L_{i,k} = \text{labor used in } i$, $S_{r,k} = \text{land used in } r$ in region *k*.

- Rural good more intensive in land, stronger decreasing returns to labor in (r).
- Land developers produce $H(\ell_k)$ units of housing space per unit of land.

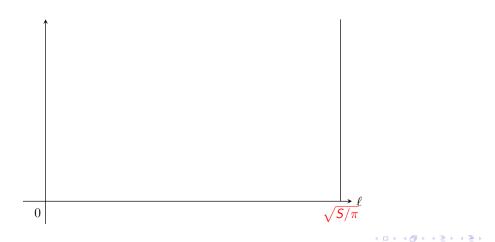
Preferences and budget constraint

Preferences for an individual in location ℓ are

$$C(\ell_k) = C \left(c_r(\ell), c_u(\ell) \right)^{1-\gamma} h(\ell_k)^{\gamma}$$

where non-homotheticity between rural and urban good is in \mathcal{C} :

$$\mathcal{C}\left(c_{r}(\ell), c_{u}(\ell)\right) = \left[\nu^{1/\sigma} \left(c_{r}(\ell) - \underline{c}\right)^{\frac{\sigma-1}{\sigma}} + (1-\nu)^{1/\sigma} \left(c_{u}(\ell) + \underline{s}\right)^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$$

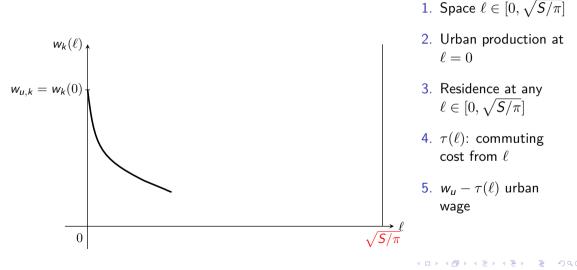

Budget constraint,

$$pc_r(\ell) + c_u(\ell) + q(\ell)h(\ell) = w(\ell) + r,$$

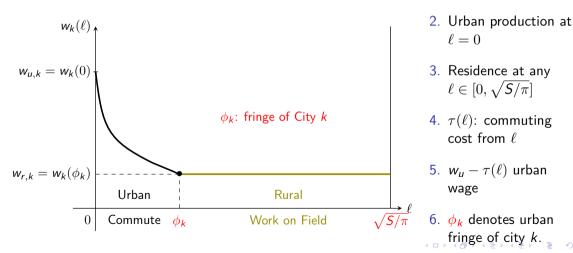
 $q(\ell)$ the (rental) price of one unit of housing in location ℓ . *r* rental income per capita, equally distributed.

Illustrating net wages along a single radius

1. Space $\ell \in [0, \sqrt{S/\pi}]$


Illustrating net wages along a single radius

2. Urban production at $w_k(\ell)$ $\ell = 0$ $w_{u,k} = w_k(0)$ 3. Residence at any $\ell \in [0, \sqrt{S/\pi}]$ 0


э

1. Space $\ell \in [0, \sqrt{S/\pi}]$

Illustrating net wages along a single radius

Illustrating net wages along a single radius

1. Space $\ell \in [0, \sqrt{S/\pi}]$

Commuting Costs in units of Numeraire Good Based on DeSalvo and Hug (JUE 1996)

Our commuting cost function is:

$$\tau(\ell_k) = \mathbf{a} \cdot (\mathbf{w}_{u,k})^{\xi_w} (\ell_k)^{\xi_\ell}$$

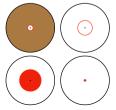
We have a micro-foundation for this model.

Substantive points: a > 0 must decrease over time, and costs concave: $\xi_w, \xi_\ell \in (0, 1).$

▶ $\xi_w < 1$ is key: commuting costs rise less than proportional with increasing wages.

Equilibrium

- Land developers buy land and numeraire good to provide residential floorspace.
 Details!
- > Arbitrage across land use at the fringe pins down land values and house prices:


$$\rho_{r,k} = \frac{q_{r,k}^{1+\epsilon}}{1+\epsilon} = (1-\alpha) p \theta_{r,k} \left(\frac{L_{r,k}}{S_{r,k}}\right)^{\alpha}$$

Equilibrium

- Land developers buy land and numeraire good to provide residential floorspace.
 Details!
- Arbitrage across land use at the fringe pins down land values and house prices:

$$\rho_{r,k} = \frac{q_{r,k}^{1+\epsilon}}{1+\epsilon} = (1-\alpha) p \theta_{r,k} \left(\frac{L_{r,k}}{S_{r,k}}\right)^{\alpha}$$

- Land Market Clearing: each city k is big enough to host $L_{n,k}$ workers, enough $S_{r,k}$ land left to produce food.
- Labour Market Clearing.
- Land Rents consistently defined.

зh

Results:

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 三臣 めんぐ

1. Intuition: Artificial Economy with K = 42. Full Quantitative Model

Sectoral and Regional Productivities

For the productivity processes, we posit that

$$\theta_{s,k,t} = \theta_{s,t} \cdot \theta_{s,t}^k$$

We denote for sector s in period t:

- ▶ an aggregate component: $\theta_{s,t}$,
- ▶ a shifter for region k: $\theta_{s,t}^k$ with weighted mean equal to 1.
- Aggregating over all K cities recovers the average city (i.e the one following $\theta_{s,t}$ only)

Sectoral and Regional Productivities

For the productivity processes, we posit that

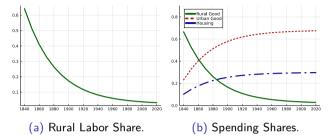
$$\theta_{s,k,t} = \theta_{s,t} \cdot \theta_{s,t}^k$$

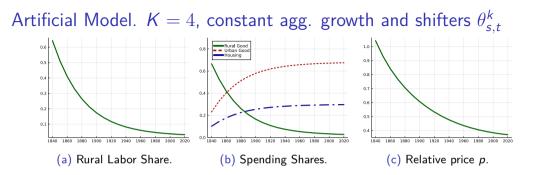

We denote for sector s in period t:

- ▶ an aggregate component: $\theta_{s,t}$,
- ▶ a shifter for region k: $\theta_{s,t}^k$ with weighted mean equal to 1.
- Aggregating over all K cities recovers the *average* city (i.e the one following $\theta_{s,t}$ only)

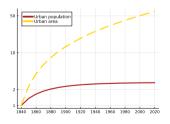
In Artificial setting (K = 4): fix constant growth of $\theta_{s,t}$, and pick $\theta_{s,t}^k$ high/low. Full model: estimate $\theta_{s,t}^k$ to match size and land price distributions.

Artificial Model. K = 4, constant agg. growth and shifters $\theta_{s,t}^k$

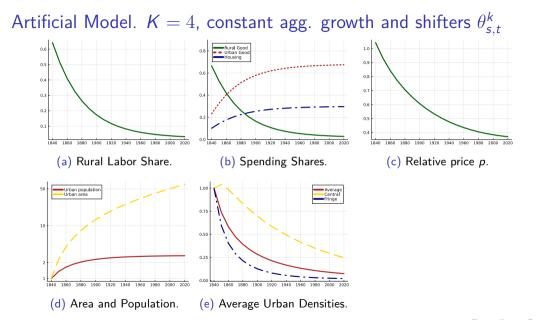

Artificial Model. K = 4, constant agg. growth and shifters $\theta_{s,t}^k$

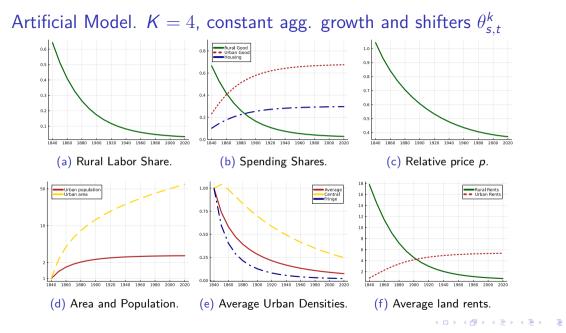


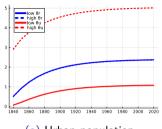
(a) Rural Labor Share.


<ロト<団ト<巨ト<Eト 目 のQで 26/40

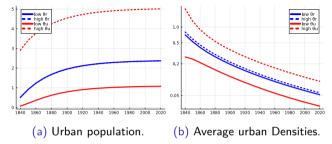
Artificial Model. K = 4, constant agg. growth and shifters $\theta_{s,t}^k$



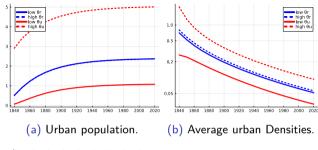

Artificial Model. K = 4, constant agg. growth and shifters $\theta_{s,t}^k$ Bural Good 0.6 1.0 0.8 Urban Good Housing 0.9 0.5 0.6 0.8 0.4 0.7 0.4 0.3 0.6 0.2 0.2 0.5 0.4 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020 (a) Rural Labor Share. (b) Spending Shares. (c) Relative price p.

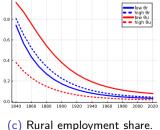

(d) Area and Population.

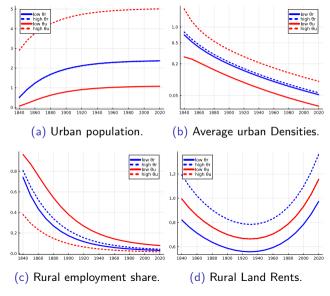
<□ > < □ > < □ > < ≧ > < ≧ > < ≧ > 26/40

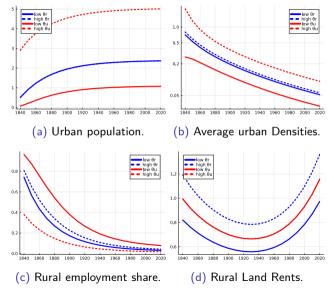


26 / 40

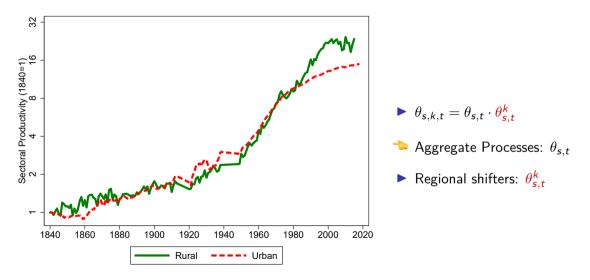

(a) Urban population.


<ロト < 部ト < 言ト < 言ト < 言 > うへで 27/40




人口区 人口区 人口区 人口区

27 / 40



Local vs Global Shocks!

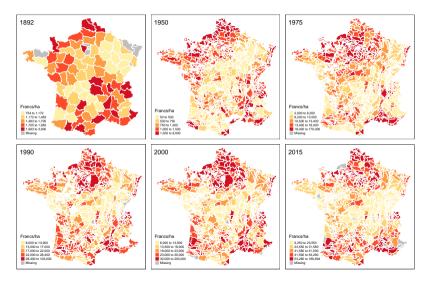
(Aggregate) Productivities Estimated From Data

<ロト < 部 ト < 注 ト < 注 ト 注 の Q (~ 28 / 40

Estimation and Identification

We target the following moments:

Aggregate:


- L_{rt}/L_t : Aggregate employment share in each period.
- Average City is 18% of rural area in 2015.
- Aggregate spending share on housing 1900 and 2010.

Regional:

- L_{ukt}/L_{u1t} : Urban pop in city k rel. to city 1 (Paris) $\Rightarrow \{\theta_{u,t}^k\}$
- ▶ ρ_{kt}/ρ_{1t} : Farmland value outside city k rel. to city $1. \Rightarrow \{\theta_{r,t}^k\}$

Internal city structure, density fall, commuting speed, house price: not targeted!

Novel Data on Land Values!

Aggregate Results: Structural Change

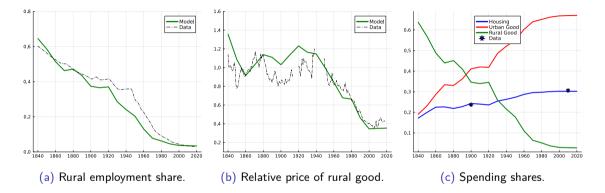


Figure: Structural change aggregated over K cities.

Aggregate Results: Urban Expansion

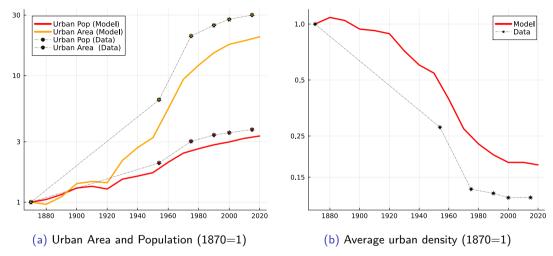


Figure: Urban expansion aggregated over K cities.

イロト 不得 とくほ とくほとう ほ

Aggregate Results: Urban Structure

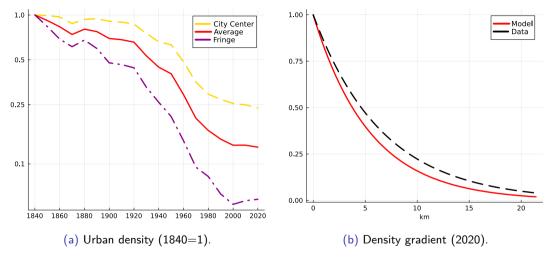


Figure: Density across space.

Aggregate Results: Commuting Speed and APG

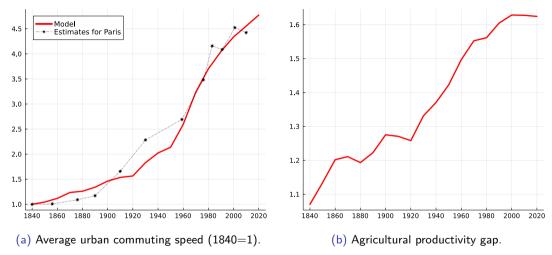


Figure: Commuting speed and the 'agricultural productivity gap'

イロン 不通 とうほう うほう 一日

Aggregate Results: Wealth Distribution and House Price

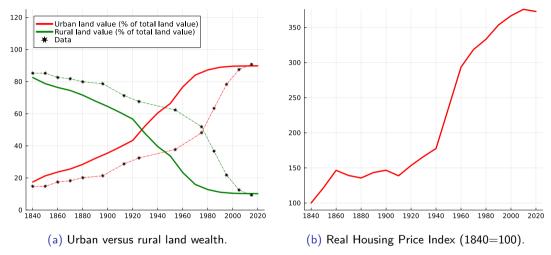


Figure: Land values and housing price

Regional Results: Outcomes Across Regions

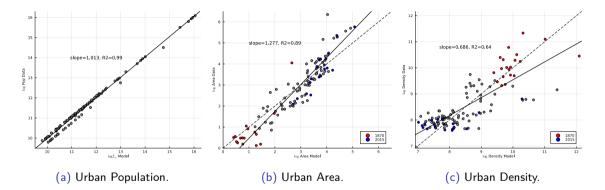


Figure: Regional Urban Moments

Regional Results: Urban Density and Land Values

	log Urban Density		
	Model	Data (OLS)	Data (IV)
$\log \overline{\rho}_{r,k,t}$	0.371***	0.126***	0.346***
	(0.018)	(0.026)	(0.098)
Controls	$\log w_{u,k,t}$	$\log w_{u,k,t}$	$\log w_{u,k,t}$
Num.Obs.	80	766	314
R2	0.994	0.253	0.272
FE: year	Х	Х	Х

Table: Urban density and rural land values in model and data.

Sensitivity Analysis

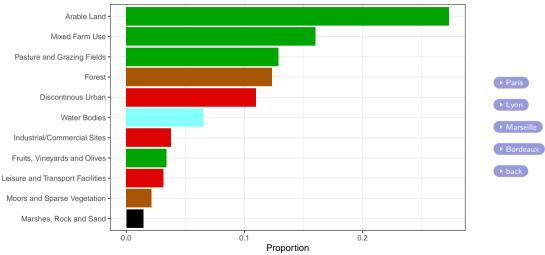
Counterfactuals enlightening the mechanisms

- The role of rural productivity growth. lower rural growth
- The role of faster commuting modes. $\epsilon_w = 1$
- The elasticity of substitution between land and labor in the rural sector. (Section B.3.1. in Appendix B)
- Constant housing elasticity $\epsilon = 3$. ((Section B.3.2. in Appendix B))

- 1. Agglomeration. (Section B.3.3. in Appendix B)
- 2. Relaxing Monocentricity. (Section B.3.4. in Appendix B)

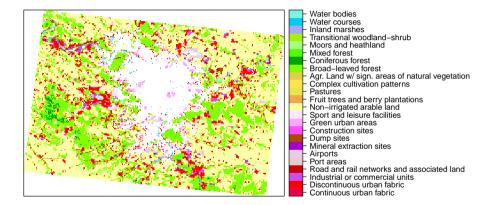
Conclusion

We introduced a spatial general equilibrium model of land use to explain

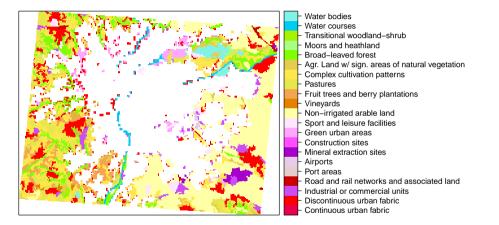

- 1. Evolution of sectoral allocation across space.
- 2. Evolution of Urban Density.
- 3. Evolution of the land value distribution.

We found:

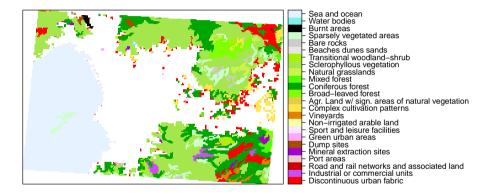
- Rural Productivity growth is crucial to understand urban expansion.
- Quantitatively, both rural and urban productivity growth as well as falling commuting costs are needed to explain data.


THANK YOU!

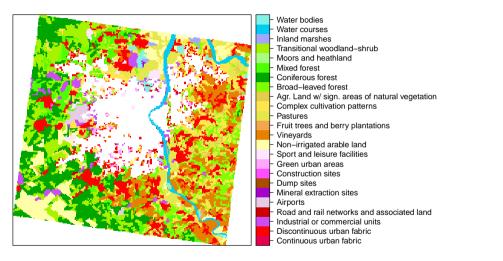
Land Use Outside Top 100 French Cities Today

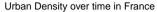

Average Land Use Outside top 100 Cities

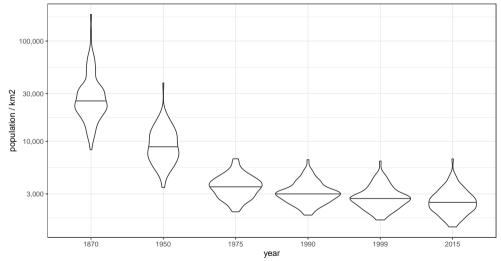
Land Use outside Paris 2020



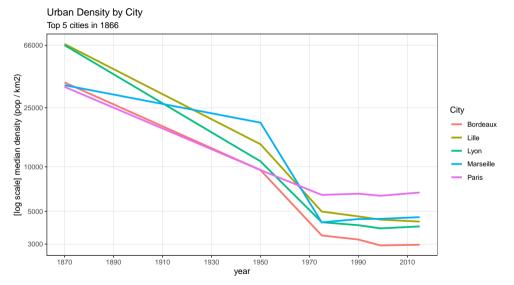
Land Use outside Lyon 2020



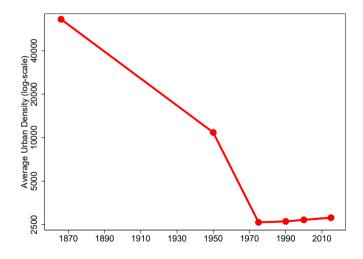

Land Use outside Marseille 2020



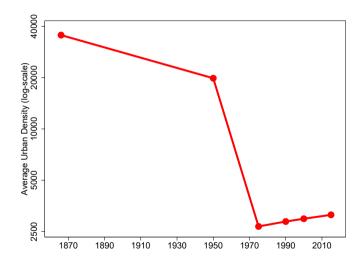
Land Use outside Bordeaux 2020



< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > 三 ∽ Q (~ 45/40

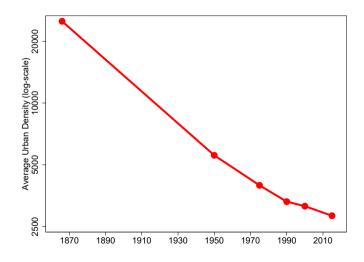


・ロト ・四ト ・ヨト ・ヨト э

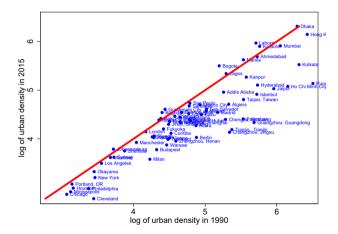


<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のQで 47/40

Lyon



Marseille



▶ back

Reims

The fall in urban density across the globe, 1990-2015 World sample of large cities

Source: Atlas of Urban Expansion. Sample of 73 cities above 1 000 000 people. Details in Angel et al. (2010).

Housing Market Equilibrium

Land developers

- Housing supply provided by land developers.
- Use more or less intensively the land for residential purposes.
- Technology

In each location, developers supply housing space $H(\ell)$ per unit of land with a convex cost,

$$\frac{H(\ell)^{1+1/\epsilon}}{1+1/\epsilon},$$

in units of the numeraire.

 $\epsilon = \text{cost parameter, possibly dependent on the location.}$

Housing Market Equilibrium

Housing supply

• Profits per unit of land at ℓ ,

$$\pi(\ell) = q(\ell)H(\ell) - \frac{H(\ell)^{1+1/\epsilon_{\ell}}}{1+1/\epsilon_{\ell}} - \rho(\ell),$$

 $\rho(\ell)$ the price of a unit of **land** in ℓ .

Housing supply from profit maximization,

$$H(\ell) = q(\ell)^{\epsilon_{\ell}},$$

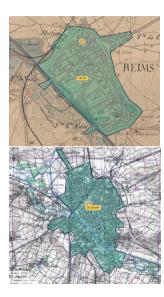
with housing supply elasticity $\epsilon_{\ell} \geq 0$, $\partial \epsilon_{\ell} / \partial \ell \geq 0$. see Baum-Snow and Huan (2019).

Housing Market Equilibrium: Supply

 \blacktriangleright Profit maximization and free entry of developers pins down land prices in ℓ ,

$$\rho(\ell) = rac{q(\ell)^{1+\epsilon_\ell}}{1+\epsilon_\ell},$$

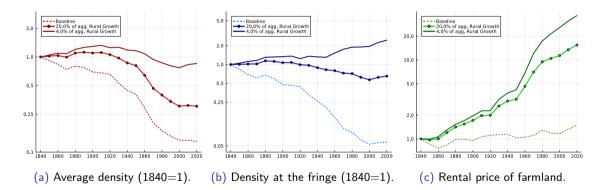
Land use with the highest rental value (Rivalry)


Indifference conditions across uses at the fringe,


$$\rho_r = \frac{(q_r)^{1+\epsilon_r}}{1+\epsilon_r} = (1-\alpha)p\theta_r \left(\frac{L_r}{S_r}\right)^{\alpha}.$$

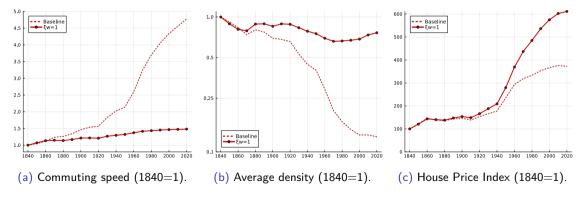
54 / 40

back


GHSL Measurement - Reims • back

Sensitivity Analysis

The role of rural productivity growth

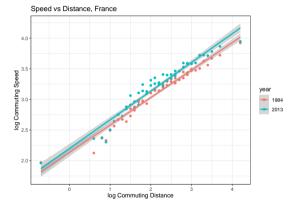


back

Sensitivity Analysis

The role of increasing commuting speed

$$au(\ell) = \mathbf{a} \cdot \mathbf{w}_{\mathbf{u}}^{\xi_{\mathbf{w}}} \cdot \ell^{\xi_{\ell}}$$



Calibration of τ

Micro foundation yields:

$$\tau(\ell) = \mathbf{a} \cdot \mathbf{w}_{u}^{\xi_{w}} \cdot \ell^{\xi_{\ell}}$$

- The elasticites of commuting speed m with respect to income and speed are defined and measured in individual commuting data as:
 - 1. Income: $1 \xi_w$. Given distance, increase in speed over increase in income (across years (see plot).
 - 2. Distance: $1 \xi_{\ell}$. Given income, elasticity of speed to distance (in a given year - see table III in appendix).

A D > A D > A D > A D >