Introduction to Dynamic Programming
ScPo Graduate Labor

February 21, 2018

1/54

Table of contents

Dynamic Programming
Dynamic Programming: Piece of Cake
Dynamic Programming Theory
Stochastic Dynamic Programming

2/54

Introduction

e This lecture will introduce you to a powerful technique called
dynamic programming (DP).

e This set of slides is very similar to the one from your grad macro
course. (same teacher.)

e We will repeat much of that material today.

¢ Next time will talk about a paper that uses DP to solve a
dynamic lifecycle model.

References

e Before we start, some useful references on DP:

@ Adda and Cooper (2003): Dynamic Economics.

® Ljunggvist and Sargent (2012) (LS): Recursive Macroeconomic
Theory.

® Lucas and Stokey (1989): Recursive Methods in Economics
Dynamics.

e They are ordered in increasing level of mathematical rigor. Adda
and Cooper is a good overview, LS is rather short.

/54

Cake Eating

You are given a cake of size W7 and need to decide how much of
it to consume in each periodt =1,2,3, ...

Cake consumption valued as u(c), u is concave, increasing,
differentiable and lim._,o u’(c) = oo.

Lifetime utility is
T
u=Y g u(x),pelo1] (1)
t=1

Let’s assume the cake does not depreciate/perish, s.t. the law of
motion of cake is

Wt+1 = Wt — ¢yt = 1,2,...,T (2)

i.e. cake in t 4 1 is this cake in f minus whatever you have of it in f.

How to decide on the optimal consumption sequence {ct}tT:l?

/54

A sequential Problem

e This problem can be written as

Wi =
Ct,WtJrl >

max i B u(cy)

{Wese by =1
s.t.

Wt — Ct
0 and W7 given.

¢ Notice that the law of motion (2) implies that

Wi

Wy + ¢q
(W3 + Cz) +

T
Wrii+) e
=1

(3)

Solving the sequential Problem

e Formulate and solve the Lagrangian for (3) with (4):

7/54

Solving the sequential Problem

e Formulate and solve the Lagrangian for (3) with (4):

T T
L = Z'Bt’lu(ct) + AWy —Wryp — ZCt + ¢ [Wr4]
t=1 t=1
¢ First order conditions:
JL =0 = B (q)=AVt (5)
aCt
oL
OWr ¢

e ¢ is lagrange multiplier on non-negativity constraint for Wr_ 1.
e we ignore the constraint ¢; > 0 by the Inada assumption.

/54

Interpreting the sequential solution

From (5) we know that ﬁt_lu’(ct) = A holds in each t.

e Therefore

i) = A
= BTN (cpp)

i.e. we get the Euler Equation
w'(cr) = Pu’(crs1) (7)

along an optimal sequence {c;‘}tT:l, each adjacent period
t,t + 1 must satisfy (7).

If (7) holds, one cannot increase utility by moving some ¢; to
Ct41.

What about deviation from {c;‘}tT:1 between t and t + 27

Is the Euler Equation enough?

e Is the Euler Equation sufficient for optimality?

9/54

Is the Euler Equation enough?

e Is the Euler Equation sufficient for optimality?

e No! We could satisfy (7), but have Wt > cr, i.e. there is some
cake left.

e What does this remind you of?
* Discuss how this relates to the value of multipliers A, ¢.

* Solution is given by initial condition (W7), terminal condition
W41 = 0 and path in EE.

e Call this solution the value function
v (W1)

* v (Wj) is the maximal utility flow over T periods given initial
cake Wj.

/54

Digression: Power Utility Functions

e We'll look at a specific class of U functions: | Power Utility |, or
isoelastic utility functions.

¢ This class includes the hyperbolic or constant relative risk
aversion functions.

e |t's defined as

u@:{i; o
In(c) ify=1.

e The coefficient of relative risk aversion is 7y i.e. a constant.

e Your risk aversion does not depend on your level of wealth.

10/54

Code for CRRA utility function

this is julia
function u(c,gamma)
if gamma==
return log(c)
else
return (1/(l-gamma)) * c”(l-gamma)
end
end

1/54

Code for plot

using PGFPlots
using LaTeXStrings

p=Axis([
Plots.Linear(x->u(x,0),(0.5,2),legendentry=L"$\gamma=0$") ,
Plots.Linear(x->u(x,1),(0.5,2),legendentry=L"$\gamma=1$"),
Plots.Linear(x->u(x,2),(0.5,2),legendentry=L"$\gamma=2$"),
Plots.Linear(x->u(x,5),(0.5,2) ,legendentry=L"$\gamma=58")
1,x1label=L"c",ylabel=L"$u(c)$",style="grid=both")
p-legendStyle = "{at={(1.05,1.0)},anchor=north westl}"

save ("images/dp/CRRA.tex",p,include_preamble=false)

then, next sltde just has \input{images/dp/CRRA}

12/54

CRRA functions

— =
— =1
Aggg,ry —
—9=5

0.5

13/54

CRRA utility Properties

The next 5 slides were contributed by [click!]Cormac O’Dea @ Yale

e We had:

u<c>:{51—3 Agh
In(c) ify=1.

'y*l is the elasticity of intertemporal substitution (IES)

e |ES is defined as the percent change in consumption growth per
percent increase in the net interest rate.

14/54

https://sites.google.com/site/cormacodea/home

CRRA utility Properties

The next 5 slides were contributed by [click!]Cormac O’Dea @ Yale

e We had:

u<c>:{51—3 Agh
In(c) ify=1.

'y*l is the elasticity of intertemporal substitution (IES)

e |ES is defined as the percent change in consumption growth per
percent increase in the net interest rate.

e Itis generally accepted that v > 1, in which case, forc € R*

u(c) <0, limou(c) = —oco, lime,ieou(c) =0
u'(c) >0, lim,ou'(c) =400, limeyieou'(c) =0

14/54

https://sites.google.com/site/cormacodea/home

CRRA utility: solution |

e Let’s modify our cake eating problem.

e W; = a;, and we introduce gross interest R = 1 + . (for
non-growing cake just take r = 0).

T 1=y

-1 5t Yy R"!
max E gt s.t R7c < m
(crmer)€®IT AT 1=y

15/54

CRRA utility: solution |

e Let’s modify our cake eating problem.

e W; = a;, and we introduce gross interest R = 1 + . (for
non-growing cake just take r = 0).

T 1=y

-1 5t Yy R"!
max E gt s.t R7c < m
(crmer)€®IT AT 1=y

e Euler equations are necessary for interior solutions:

7" = BRe; = o = (BR) ey fort=1,...,T—1

15/54

CRRA utility: solution |

e Let’s modify our cake eating problem.

e W; = a;, and we introduce gross interest R = 1 + . (for
non-growing cake just take r = 0).

T 1=y

-1 5t Yy R"!
max E gt s.t R7c < m
(crmer)€®IT AT 1=y

e Euler equations are necessary for interior solutions:

7" = BRe; = o = (BR) ey fort=1,...,T—1

e By successive substitution:

Ct = (IBR)%Cl

15/54

CRRA utility: solution Il

e The budget constraint and optimality condition imply

mo=) Rt

t=1,...,T
11\t
= E (IB“YR 7)
t=1,..., T
= 0 wit

16/54

CRRA utility: solution Il

e The budget constraint and optimality condition imply

mo=) Rt

t=1,...,T

e The solutionfort=1,...,T:

1—u« 1—uw =1
C1 — mal and ct = m(ﬁR) v LZ1

16/54

CRRA utility: solution 11l

In general, if the optimisation problem starts at time ¢ as follows

1—y T
c _
max Z,B t L st Y R 'er <o
(C[,.A.,CT)]R+ T-t+1 T= T=t
the solution for ¢; is
1—«
€t = 1 __aT—¢+1at

This is the consumption function, a linear function of assets if utility is
CRRA

17/ 54

CRRA consumption: ¢; = =% (BR) 7 ay

1—aT
1072
T T T T T 77’:10/0
81 1 |—r=25%
71’25(70
6, |
Q
4, |

| | | | |

20 30 40 50 60
t

Figure: BR determines the profile of the solution.
B=1.025"1,v=2a =20

18/54

The Dynamic Programming approach with T' = oo

e Let’s consider the case T = co.
¢ In other words

max B u(cy) (8)
{Wisrediey ;
s.t.
Wt+1 = Wt — Ct (9)

¢ Under some conditions, this can be written as

v(Wy) = max u(c) + po(Wi — ct) (10)
Cte[O,Wf]
¢ Some Definitions:

e Call W the state variable,
¢ and c the control variable.
e (9)is the law of motion or transition equation.

19/54

The Dynamic Programming approach with T' = oo

Note that t is irrelevant in (10). Only W matters.

Substituting c = W — W', where x’ is next period’s value of x

o(W) = Wgel[%?(w] u (W —W) + po(W) (1)

This is the Bellman Equation after Richard Bellman.

It is a functional equation (v is on both sides!).

Our problem has changed from finding { W1, ¢ };-; to finding
the function v.

This is called a fixed point problem:

Find a function v such that plugging in W on the RHS and doing the
maximization, we end up with the same v on the LHS.

20/54

Value Function and Policy Function

e Great! We have reduced an infinite-length sequential problem
to a one-dimensional maximization problem.

e But we have to find 2(!) unknown functions! Why two?

e The maximizer of the RHS of (11) is the policy function,
(W) =c*.

¢ This function gives the optimal value of the control variable,
given the state.

e |t satisfies

v (W) =u(g(W))+pv(g(W)) (12)

(you can see that the max operator vanished, because g(W) is
the optimal choice)

e In practice, finding value and policy function is the one
operation.

21/54

Using Dynamic Programming to solve the Cake problem

e Let’s pretend that we knew v for now:

o(W) = Wpel[%?(w] u (W —W') + po(W)

e Assuming v is differentiable, the FOC wrt W’
u'(c) = po’ (W)

¢ Taking the partial derivative w.r.t. the state W, we get the
envelope condition
o' (W) =u'(c)

e This needs to hold in each period. Therefore

(W) = ()

(13)

22/54

Using Dynamic Programming to solve the Cake problem

e Combining (13) with (15)

we obtain the usual euler equation.

e Any solution vwill satisfy this necessary condition, as in the
sequential case.

23/54

Using Dynamic Programming to solve the Cake problem

e Combining (13) with (15)

we obtain the usual euler equation.

e Any solution vwill satisfy this necessary condition, as in the
sequential case.

¢ So far, so good. But we still don’t know v!

23/54

Finding v

e Finding the Bellman equation v and associated policy function g
is not easy.

¢ In general, it is impossible to find an analytic expression, i.e. to
do it by hand.

e Most of times you will use a computer to solve for it.

e preview: The rationale for why we can find it has to do with the
fixed point nature of the problem. We will see that under some
conditions we can always find that fixed point.

e We will look at a particular example now, that we can solve by
hand.

24/54

Finding v: an example with closed form solution

e Let's assume that u(c) = Incin (11).
e Also, let’s conjecture that the value function has the form

o(W)=A+BInW (16)

e We have to find A, B such that (16) satisfies (11).
e Pluginto (11):

A+BInW = r%xln(W—W') +B(A+BInW') (17)

25/54

Finding v: an example with closed form solution

e Let's assume that u(c) = Incin (11).
e Also, let’s conjecture that the value function has the form

o(W)=A+BInW (16)

e We have to find A, B such that (16) satisfies (11).
¢ Pluginto (11):

A+BInW = r%xln(W—W') +B(A+BInW') (17)

e FOC wrt W':
1)
W-Ww — W
W' = BB(W-W)
/ BB
W= 1+ BB

= g(W)

25/54

Finding v: an example with closed form solution
e Let’s use this policy function in (17):

o(W) = In(W—-g(W))+B(A+Blng(W))
W

g B (s | Low))

¢ Now we collect all terms In W on the RHS, and put all else into
the constant A:
v(W) = A+InW+BBInW
A+ (1+BB)InW

= In

» We conjectured that v(W) = A 4+ Bln W. Hence

= (1+8B)
1

B
B =
1-p

* Policy function: g(W) = pW

26/54

The Guess-and-Verify method

¢ Note that we guessed a functional form for v.

¢ And then we verified that it consitutues a solution to the
functional equation.

e This method (guess and verify) would in principle always work,
but it's not very practical.

27/54

Solving the Cake problem with T' < oo

When time is finite, solving this DP is fairly simple.

If we know the value in the final period, we can simply go
backwards in time.

In period T there is no point setting W’ > 0. Therefore

or(W) = u(W) (18)

Notice that we index the value function with time in this case:

e it's not the same to have W in period 1 as it is to have W in
period T. Right?

But if we know vt for all values of W, we can construct vp_1!

28/54

Backward Induction and the Cake Problem
e We know that

UT_1 (WTfl) = WT;I[’(l)aVi/(T]u (W]Ll — WT) + ‘BUT (WT)
Wr_1

= max u (Wr_q1 — Wrp) 4+ Bu (W
Wr€[0,Wr_1] (~ T) ﬂ (T)

= max In (WT,1 — WT) + BInWr
WTG[O,WT,l]

e FOC wrt Wr:

1

o B
Wr_1 —Wr Wr
B
Wr = ——Wp_
T 1+ B T-1
e Thus the value functionin T — 1 is

vr—1 (Wr-1) =In (W’21> +BIn (H—IBﬁWT1>

29/54

Backward Induction and the Cake Problem
e Correspondingly, in T — 2:

o (Wrp) = Wy — Wr_ 1 (Wr
vr—2 (Wr—2) WTAI?[%);VH]”(72— Wr_1) + Bor—1 (Wr_1)

= max u (WTfZ — WT—l)
WTfle[O,WT,z}

o o[(%) oo ()

e FOC wrt WT—Z-

e andsoonuntil t = 1.

e Again, without log utility, this quickly get intractable. But your
computer would proceed in the same backwards iterating
fashion.

e Notice that with T finite, there is no fixed point problem if we do
backwards induction.

30/54

Dynamic Programming Theory

e Let’s go back to the infinite horizon problem.
e Let’s define a general DP as follows.

¢ Payoffs over time are

u= lBtﬁ (St,Ct)

hgk

Il
—_

t

where B < 1is a discount factor, s; is the state, c; is the control.
e The state (vector) evolves as s;11 = h(st, ct).

e All past decisions are contained in s;.

31/54

DP Theory: more assumptions

o Letc; € C(st),s: € S and assume i is bounded in

(¢,s) e CxS.
e Stationarity: neither payoff i nor transition 1 depend on time.
e Modify 7i to u s.t. in terms of s’ (as in cake: c = W — W'):

v(s) = max u(s,s’) + Bo(s’) (19)
s'el'(s)

e T'(s) is the constraint set (or feasible set) for s’ when the current
state is s:
e before that was T'(W) = [0, W]

e We will work towards one possible set of sufficient conditions
for the existence to the functional equation. Please consult
Stokey and Lucas for greater detail.

32/54

Proof of Existence

Theorem

Assume that u(s, s") is real-valued, continuous, and bounded, that
B € (0,1), and that the constraint set T'(s) is nonempty, compact,
and continuous. Then there exists a unique function v(s) that solves
(19).

Proof.
Stokey and Lucas (1989, theoreom 4.6).

O

33/54

The Bellman Operator T(W)

Define an operator Ton function W as T(W):

T(W)(s) = ;n?(x) u(s,s') + BW(s') (20)

e The Bellman operator takes a guess of current value function W,
performs the maximization, and returns the next value function.

e Any u(s) = T(v)(s) is a solution to (19).

* So we need to find a fixed point of T(W).

e This argument proceeds by showing that T(W) is a contraction.

e Info: This relies on the Banach (or contraction) mapping
theorem.

e There are two sufficiency conditions we can check:
Monotonicity, and Discounting.

34/54

The Blackwell (1965) sufficiency conditions: Monotonicity
¢ Need to check Monotonicity and Discounting of the operator
T(W).
e Monotonicity means that
W(s) 2 Q(s) = TW)(s) = T(Q)(s), Vs
e Let ¢p(s) be the policy function of

Q(s) = max u(s,s') + BQ(s)

s'el'(s)
and assume W(s) > Q(s). Then

T(W)(s) = ;2%“(5/5') +BW(s') = uls, go(s)) + BW(eq(s))

> u(s, ¢o(s)) + PQ(¢o(s)) = T(Q)(s)
Show example with W(s) = log(s?), Q(s) = log(s),s > 0

35/54

The Blackwell (1965) sufficiency conditions: Discounting

e Adding constant a to W leads T(W) to increase less than a.

¢ In other words
T(W+a)(s) <T(W)(s)+ a,p €[0,1)

e discounting because < 1.

¢ To verify on the Bellman operator:

T(W+a)(s) = Jnax u(s,s') + B [W(s') +a] = T(W)(s)+ Ba

e Intuition: the discounting property is key for a contraction.

* In successive iterations on T(W) we add only a fraction B of W.

36/54

Contraction Mapping Theorem (CMT)

The CMT tells us that for a function of type T'(-)

@ There is a unique fixed point. (from previous Stokey-Lucas proof.)
@ This fixed point can be reached by iterating on T in (20) using an
arbitrary starting point.

Very useful to find a solution to (19):

@ Start with an initial guess Vj(s).
@ Apply the Bellman operator to get V1 = T(V))

© it Vi(s) = V(s) we have a solution, done.
@ if not, continue:

® Apply the Bellman operator to get V, = T(V7)
@ etcuntil T(V) = V.

Again: if T(V) is a contraction, this will converge.

This technique is called value function iteration.

37/54

Value Function inherits Properties of u

Theorem

Assume u(s,s') is real-values, continuous, concave and bounded,

0 < B < 1, that S is a convex subset of R¥ and that the constraint set
I'(s) is non-empty, compact-valued, convex, and continuous. Then the
unique solution to (19) is strictly concave. Furthermore, the policy
¢(s) is a continuous, single-valued function.

Proof.
See theorem 4.8 in Stokey and Lucas (1989). O

38/54

Value Function inherits Properties of u

* proof shows that if V is concave, so is T(V).

 Givenu(s,s’) is concave, let the initial guess be

Vo(s) = ;21{_;1();) u(s,s")

and therefore Vy(s) is concave.

* Since T preserves concavity, V1 = T (V) is concave etc.

39/54

VFI Example: Growth Model

V(k) = 0<I1?3}((k) In(f(k) — k') + BV (K')

fk) = K*

ko given

(21)

(22)
(23)

40/54

VFI Example: Growth Model

R Code
parameters
alpha = 0.65
beta = 0.95

grid_max = 2 # upper bound of capital grid
n = 150
kgrid

seq(from=1e-6,to=grid_max,len=n) # equispaced
f <- function(x,alpha){x"alpha} # defines the production

value function iteration (VFI)
VFI <- function (grid,VO,maxIter)q{
w = matrix(0,length(grid) ,maxIter)
wl,1] = VO # 4nitial condition
for (i in 2:maxIter)q{
wl[,i] = bellman_operator(grid, w[,i-1])
}

return(w)

41/54

VFI Example

Starting from a log (k) scaled initial value

_20 -
304 iteration
30
e
= 20
g
10
_40 -
_50 -
' ' ' ' '
0.0 0.5 1.0 15 2.0
grid

42/54

VFI Example

Starting from a random initial value

_20 -
_30- iteration
60
()
2 40
g
20
_40 -
_50 -
' ' ' ' '
0.0 0.5 1.0 15 2.0
grid

43/54

Stochastic Dynamic Programming

e There are several ways to include uncertainty into this
framework - here is one:

Let’s assume the existence of a variable €, representing a shock.

Assumptions:

@ ¢ affects the agent’s payoff in period £.

® c; is exogenous: the agent cannot influence it.

©® ¢ depends only on €;_1 (and not on €;_5. although we could
add €;_1 as a state variable!)

@ The distribution of €’|e is time-invariant.

Defined in this way, we call € a first-order Markov process.

44/54

The Markov Property

Definition
A stochastic process {x; } is said to have the Markov property if for all
k> 1andallt,

Pr (xp1]xe Xe—1, -+, %) = Pr (011 |x¢) -

We assume that {€;} has this property, and characterize it by a
Markov Chain.

45/54

Markov Chains

Definition
A time-invariant n-State Markov Chain consists of:
@ 1 vectors of size (n,1): ¢;,i = 1,...,n such that the i-th entry of
e; is one and all others zero,
@ one (1, n) transition matrix P, giving the probability of moving
from state i to state j, and
@ a vector 71p; = Pr (xp = ¢;) holding the probability of being in
state i at time O.

/ /
‘61:[1 0o ... 0} ,62:[0 1 ... O} ,... are just a way
of saying “x is in state 7"

e The elements of P are

Pi]‘ = Pr (xt+1 = e]']xt = ei)

46 /54

Assumptions on P and 71y

@ Fori—=1,...,n, the matrix P satisfies

n
Pi=1
j=1

® The vector 71y satisfies
n
Y moi=1
i=1

¢ In other words, P is a stochastic matrix, where each row sums to
one:
e row i has the probabilities to move to any possible state j. A valid
probability distribution must sum to one.
e P defines the probabilities of moving from current state i to
future state ;.
e 779 is a valid initial probability distribution.

47/ 54

Transition over two periods

e The probability to move from i to j over two periods is given by
2
Pi]-.
e Why:
Pr(x 2 =¢jlxy =¢) =
n
Y Pr(xg2 = ej|xiq1 = ey) Pr(xpq1 = eyl =€) =

h=1

- _ p®
Z PyPy = P ij
h=1

e Show 3-State example to illustrate this.

48/54

Conditional Expectation from a Markov Chain

e What is expected value of x;, 1 given x; = ¢;?

e Simple:
E [xt+1]xt =e;] = values of x x Prob of those values
= iej X Pr (xp41 = ejle;)
j=1
= [xl Xy ... xn} (Pi)l

where P; is the i-th row of P, and (P;)" is the transpose of that
row (i.e. a column vector).

e What is the conditional expectation of a function f(x), i.e. what
is
Eff(xe1)[xe = ei?

49 /54

Back to Stochastic DP

e With the Markovian setup, we can rewrite (19) as

v(s,€) = me(lx)u(s, s',€) + BE [v(s',€’) €] (24)
s'el(s,e

Theorem
If u(s, s, €) is real-valued, continuous, concave, and bounded, if
B € (0,1), and constraint set is compact and convex, then

@ there exists a unique value function v(s, €) that solves (24).

@ there exists a stationary policy function ¢(s, €).

Proof.
This is a direct application of Blackwell’s sufficiency conditions:

@ with B < 1 discounting holds for the operator on (24).
® Monotonicity can be established as before.

50/54

Optimality in the Stochastic DP

e As before, we can derive the first order conditions on (24):
ug(s,s',€) + BE [Va(s',€)|e] =0
« differentiating (24) w.r.t. s to find V(s', €’) we find

ug(s,s',€) + BE [uy (s',s",€")|e] =0

51/54

DP Application 1: The Deterministic Growth Model

e We will now solve the deterministic growth model with dynamic
programming.
e Remember:
V(k) = max u(c)+ BV (K 25
()= _max_ ule) +BV(K) 29
o Assume f(k) = k%, u(c) = Inc.
e We will use discrete state DP. We cannot hope to know V at all

k € R.. Therefore we compute V at a finite set of points, called
a grid.

e Hence, we must also choose those grid points.

52/54

DP Application: Discretize state and solution space

e There are many ways to approach this problem:

V(k) = k,rertgﬁ] In(k* — k') + BV (K') (26)

e Probably the easiest goes like this:

@ Discretize V onto a grid of n points KC = {kq,kp, ..., kn}.

@ Discretize control k’: change maxy ¢ k] t0 Maxp e, i.e. choose
k' from the discrete grid.

® Guess an initial function Vo (k).

@ lterate on (26) until d (V41 — V) < ¢, where d() is a measure
of distance, and ¢ > 0 is a tolerance level chosen by you.

53/54

References

Jerome Adda and Russell W Cooper. Dynamic economics:
quantitative methods and applications. MIT press, 2003.

Lars Ljungqvist and Thomas J Sargent. Recursive macroeconomic
theory. MIT press, 2012.

RE Lucas and NL Stokey. Recursive Methods in Dynamic Economics.

Harvard University Press, Cambridge MA, 1989.

54/54

	Dynamic Programming
	Dynamic Programming: Piece of Cake
	Dynamic Programming Theory
	Stochastic Dynamic Programming

