Introduction to Dynamic Programming ScPo Graduate Labor

February 21, 2018

Table of contents

Dynamic Programming

Dynamic Programming: Piece of Cake Dynamic Programming Theory Stochastic Dynamic Programming

Introduction

- This lecture will introduce you to a powerful technique called *dynamic programming (DP)*.
- This set of slides is very similar to the one from your grad macro course. (same teacher.)
- We will repeat much of that material today.
- Next time will talk about a paper that uses DP to solve a dynamic lifecycle model.

References

- Before we start, some useful references on DP:
 - 1 Adda and Cooper (2003): Dynamic Economics.
 - 2 Ljungqvist and Sargent (2012) (LS): Recursive Macroeconomic Theory.
 - 3 Lucas and Stokey (1989): Recursive Methods in Economics Dynamics.
- They are ordered in increasing level of mathematical rigor. Adda and Cooper is a good overview, LS is rather short.

Cake Eating

- You are given a cake of size W_1 and need to decide how much of it to consume in each period t = 1, 2, 3, ...
- Cake consumption valued as u(c), u is concave, increasing, differentiable and $\lim_{c\to 0} u'(c) = \infty$.
- Lifetime utility is

$$U = \sum_{t=1}^{T} \beta^{t-1} u(c_t), \beta \in [0, 1]$$
 (1)

 Let's assume the cake does not depreciate/perish, s.t. the law of motion of cake is

$$W_{t+1} = W_t - c_t, t = 1, 2, ..., T$$
 (2)

i.e. cake in t + 1 is this cake in t minus whatever you have of it in t.

• How to decide on the optimal consumption sequence $\{c_t\}_{t=1}^T$?

A sequential Problem

• This problem can be written as

$$v(W_{1}) = \max_{\{W_{t+1}, c_{t}\}_{t=1}^{T}} \sum_{t=1}^{T} \beta^{t-1} u(c_{t})$$
(3)
s.t.
$$W_{t+1} = W_{t} - c_{t}$$

 $c_{t}, W_{t+1} \ge 0$ and W_{1} given.

Notice that the law of motion (2) implies that

$$W_{1} = W_{2} + c_{1}$$

= $(W_{3} + c_{2}) + c_{1}$
= ...
= $W_{T+1} + \sum_{t=1}^{T} c_{t}$ (4)

イロト イポト イモト イモト 一日

6/54

Solving the sequential Problem

• Formulate and solve the Lagrangian for (3) with (4):

Solving the sequential Problem

• Formulate and solve the Lagrangian for (3) with (4):

$$L = \sum_{t=1}^{T} \beta^{t-1} u(c_t) + \lambda \left[W_1 - W_{T+1} - \sum_{t=1}^{T} c_t \right] + \phi \left[W_{T+1} \right]$$

• First order conditions:

$$\frac{\partial L}{\partial c_t} = 0 \implies \beta^{t-1} u'(c_t) = \lambda \,\forall t \tag{5}$$
$$\frac{\partial L}{\partial W_{T+1}} = 0 \implies \lambda = \phi \tag{6}$$

- ϕ is lagrange multiplier on non-negativity constraint for W_{T+1} .
- we ignore the constraint $c_t \ge 0$ by the Inada assumption.

Interpreting the sequential solution

- From (5) we know that $\beta^{t-1}u'(c_t) = \lambda$ holds in each t.
- Therefore

$$\beta^{t-1}u'(c_t) = \lambda$$
$$= \beta^{(t+1)-1}u'(c_{t+t})$$

i.e. we get the Euler Equation

$$u'(c_t) = \beta u'(c_{t+1})$$
 (7)

- along an optimal sequence $\{c_t^*\}_{t=1}^T$, each adjacent period t, t+1 must satisfy (7).
- If (7) holds, one cannot increase utility by moving some c_t to c_{t+1} .
- What about deviation from $\{c_t^*\}_{t=1}^T$ between t and t + 2?

Is the Euler Equation enough?

• Is the Euler Equation sufficient for optimality?

Is the Euler Equation enough?

- Is the Euler Equation sufficient for optimality?
- No! We could satisfy (7), but have $W_T > c_T$, i.e. there is some cake left.
- What does this remind you of?
- Discuss how this relates to the value of multipliers λ , ϕ .
- Solution is given by initial condition (W_1) , terminal condition $W_{T+1} = 0$ and path in EE.
- Call this solution the value function

$v(W_1)$

• $v(W_1)$ is the maximal utility flow over *T* periods given initial cake W_1 .

Digression: Power Utility Functions

- We'll look at a specific class of U functions: Power Utility, or *isoelastic* utility functions.
- This class includes the **hyperbolic** or **constant** relative risk aversion functions.
- It's defined as

$$u(c) = \begin{cases} \frac{c^{1-\gamma}}{1-\gamma} & \text{if } \gamma \neq 1\\ \ln(c) & \text{if } \gamma = 1. \end{cases}$$

- The coefficient of relative risk aversion is γ i.e. a constant.
- Your risk aversion does not depend on your level of wealth.

Code for CRRA utility function

```
# this is julia
function u(c,gamma)
    if gamma==1
        return log(c)
    else
        return (1/(1-gamma)) * c^(1-gamma)
    end
end
```

Code for plot

using PGFPlots using LaTeXStrings

p=Axis([
Plots.Linear(x->u(x,0),(0.5,2),legendentry=L"\$\gamma=0\$"),
Plots.Linear(x->u(x,1),(0.5,2),legendentry=L"\$\gamma=1\$"),
Plots.Linear(x->u(x,2),(0.5,2),legendentry=L"\$\gamma=2\$"),
Plots.Linear(x->u(x,5),(0.5,2),legendentry=L"\$\gamma=5\$")
],xlabel=L"\$c\$",ylabel=L"\$u(c)\$",style="grid=both")
p.legendStyle = "{at={(1.05,1.0)},anchor=north west}"
save("images/dp/CRRA.tex",p,include_preamble=false)

then, next slide just has \input{images/dp/CRRA}

CRRA functions

13/54

æ

CRRA utility Properties

The next 5 slides were contributed by [click!]Cormac O'Dea @ Yale

• We had:

$$u(c) = \begin{cases} \frac{c^{1-\gamma}}{1-\gamma} & \text{if } \gamma \neq 1\\ \ln(c) & \text{if } \gamma = 1. \end{cases}$$

 γ^{-1} is the elasticity of intertemporal substitution (IES)

• IES is defined as the percent change in consumption growth per percent increase in the net interest rate.

CRRA utility Properties

The next 5 slides were contributed by [click!]Cormac O'Dea @ Yale

• We had:

$$u(c) = \begin{cases} \frac{c^{1-\gamma}}{1-\gamma} & \text{if } \gamma \neq 1\\ \ln(c) & \text{if } \gamma = 1. \end{cases}$$

 γ^{-1} is the elasticity of intertemporal substitution (IES)

- IES is defined as the percent change in consumption growth per percent increase in the net interest rate.
- It is generally accepted that $\gamma \geq 1$, in which case, for $c \in \mathbb{R}^+$

$$u(c) < 0, \quad \lim_{c \to 0} u(c) = -\infty, \quad \lim_{c \to +\infty} u(c) = 0$$

 $u'(c) > 0, \quad \lim_{c \to 0} u'(c) = +\infty, \quad \lim_{c \to +\infty} u'(c) = 0$

CRRA utility: solution I

- Let's modify our cake eating problem.
- *W_t* ⇒ *a_t*, and we introduce gross interest *R* = 1 + *r*. (for non-growing cake just take *r* = 0).

$$\max_{(c_1,...,c_T)\in(\mathbb{R}^+)^T} \sum_{t=1}^T \beta^{t-1} \frac{c_t^{1-\gamma}}{1-\gamma} \qquad \text{s.t} \quad \sum_{t=1}^T R^{1-t} c_t \leq a_1$$

CRRA utility: solution I

- Let's modify our cake eating problem.
- *W_t* ⇒ *a_t*, and we introduce gross interest *R* = 1 + *r*. (for non-growing cake just take *r* = 0).

$$\max_{(c_1,\ldots,c_T)\in(\mathbb{R}^+)^T}\sum_{t=1}^T\beta^{t-1}\frac{c_t^{1-\gamma}}{1-\gamma} \qquad \text{s.t} \quad \sum_{t=1}^TR^{1-t}c_t \leq a_1$$

• Euler equations are necessary for interior solutions:

$$c_t^{-\gamma} = eta R c_{t+1}^{-\gamma} \quad \Rightarrow \quad c_t = (eta R)^{-rac{1}{\gamma}} c_{t+1} \quad ext{for } t = 1, \dots, T-1$$

CRRA utility: solution I

- Let's modify our cake eating problem.
- *W_t* ⇒ *a_t*, and we introduce gross interest *R* = 1 + *r*. (for non-growing cake just take *r* = 0).

$$\max_{(c_1,\ldots,c_T)\in(\mathbb{R}^+)^T}\sum_{t=1}^T\beta^{t-1}\frac{c_t^{1-\gamma}}{1-\gamma} \qquad \text{s.t} \quad \sum_{t=1}^TR^{1-t}c_t \leq a_1$$

• Euler equations are necessary for interior solutions:

$$c_t^{-\gamma} = eta R c_{t+1}^{-\gamma} \quad \Rightarrow \quad c_t = (eta R)^{-rac{1}{\gamma}} c_{t+1} \quad ext{for } t = 1, \dots, T-1$$

• By successive substitution:

$$c_t = (\beta R)^{\frac{t-1}{\gamma}} c_1$$

イロト イポト イモト イモト 二日

CRRA utility: solution II

• The budget constraint and optimality condition imply

$$a_1 = \sum_{t=1,\dots,T} R^{1-t} c_t$$

= $c_1 \sum_{t=1,\dots,T} \left(\beta^{\frac{1}{\gamma}} R^{\frac{1-\gamma}{\gamma}}\right)^{t-1}$
= $c_1 \sum_{t=1,\dots,T} \alpha^{t-1}$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

16/54

CRRA utility: solution II

• The budget constraint and optimality condition imply

$$a_1 = \sum_{t=1,\dots,T} R^{1-t} c_t$$

= $c_1 \sum_{t=1,\dots,T} \left(\beta^{\frac{1}{\gamma}} R^{\frac{1-\gamma}{\gamma}}\right)^{t-1}$
= $c_1 \sum_{t=1,\dots,T} \alpha^{t-1}$

• The solution for $t = 1, \ldots, T$:

$$c_1 = rac{1-lpha}{1-lpha^T}a_1$$
 and $c_t = rac{1-lpha}{1-lpha^T}(eta R)^{rac{t-1}{\gamma}}a_1$

・ロト・4日・4日・4日・ 日 うへぐ

16/54

CRRA utility: solution III

In general, if the optimisation problem starts at time t as follows

$$\max_{(c_t,\ldots,c_T)\in(\mathbb{R}^+)^{T-t+1}}\sum_{\tau=t}^T \beta^{\tau-t} \frac{c_\tau^{1-\gamma}}{1-\gamma} \qquad \text{s.t} \quad \sum_{\tau=t}^T R^{\tau-t} c_\tau \leq a_\tau$$

the solution for c_t is

$$c_t = \frac{1-\alpha}{1-\alpha^{T-t+1}}a_t$$

This is the *consumption function*, a linear function of assets if utility is CRRA

CRRA consumption: $c_t = \frac{1-\alpha}{1-\alpha^T} (\beta R)^{\frac{t-1}{\gamma}} a_1$

Figure: βR determines the profile of the solution. $\beta = 1.025^{-1}, \gamma = 2, a_1 = 20$

◆□ ▶ ◆ ⑦ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ Q ○ 18/54

The Dynamic Programming approach with $T = \infty$

- Let's consider the case $T = \infty$.
- In other words

$$\max_{\substack{\{W_{t+1},c_t\}_{t=1}^{\infty} \\ s.t.}} \sum_{t=1}^{\infty} \beta^{t-1} u(c_t)$$
(8)
s.t.
$$W_{t+1} = W_t - c_t$$
(9)

Under some conditions, this can be written as

$$v(W_t) = \max_{c_t \in [0, W_t]} u(c_t) + \beta v(W_t - c_t)$$
(10)

- Some Definitions:
 - Call W the state variable,
 - and *c* the **control variable**.
 - (9) is the law of motion or transition equation.

The Dynamic Programming approach with $T = \infty$

- Note that *t* is irrelevant in (10). Only *W* matters.
- Substituting c = W W', where x' is next period's value of x

$$v(W) = \max_{W' \in [0,W]} u(W - W') + \beta v(W')$$
(11)

- This is the **Bellman Equation** after Richard Bellman.
- It is a functional equation (v is on both sides!).
- Our problem has changed from finding {W_{t+1}, c_t}[∞]_{t=1} to finding the function v.

This is called a fixed point problem:

Find a function v such that plugging in W on the RHS and doing the maximization, we end up with *the same* v on the LHS.

Value Function and Policy Function

- Great! We have reduced an infinite-length sequential problem to a one-dimensional maximization problem.
- But we have to find 2(!) unknown functions! Why two?
- The maximizer of the RHS of (11) is the **policy function**, $g(W) = c^*$.
- This function gives the optimal value of the control variable, given the state.
- It satisfies

$$v(W) = u(g(W)) + \beta v(g(W))$$
(12)

(you can see that the max operator vanished, because g(W) is the optimal choice)

• In practice, finding value and policy function is the one operation.

Using Dynamic Programming to solve the Cake problem

• Let's pretend that we knew v for now:

$$v(W) = \max_{W' \in [0,W]} u \left(W - W' \right) + \beta v(W')$$

• Assuming v is differentiable, the FOC wrt W'

$$u'(c) = \beta v'(W') \tag{13}$$

• Taking the partial derivative w.r.t. the state *W*, we get the *envelope condition*

$$v'(W) = u'(c)$$
 (14)

• This needs to hold in each period. Therefore

$$v'(W') = u'(c')$$
 (15)

Using Dynamic Programming to solve the Cake problem

• Combining (13) with (15)

$$u'(c) \stackrel{(13)}{=} \beta v'(W')$$
$$\stackrel{(15)}{=} \beta u'(c')$$

we obtain the usual euler equation.

• Any solution *v* will satisfy this necessary condition, as in the sequential case.

Using Dynamic Programming to solve the Cake problem

• Combining (13) with (15)

$$u'(c) \stackrel{(13)}{=} \beta v'(W')$$
$$\stackrel{(15)}{=} \beta u'(c')$$

we obtain the usual euler equation.

- Any solution *v* will satisfy this necessary condition, as in the sequential case.
- So far, so good. But we still don't know v!

Finding v

- Finding the Bellman equation v and associated policy function g is not easy.
- In general, it is impossible to find an analytic expression, i.e. to do it by hand.
- Most of times you will use a computer to solve for it.
- **preview:** The rationale for why we can find it has to do with the fixed point nature of the problem. We will see that under some conditions we can **always** find that fixed point.
- We will look at a particular example now, that we can solve by hand.

Finding v: an example with closed form solution

- Let's assume that $u(c) = \ln c$ in (11).
- Also, let's conjecture that the value function has the form

$$v(W) = A + B \ln W \tag{16}$$

25/54

- We have to find A, B such that (16) satisfies (11).
- Plug into (11):

$$A + B \ln W = \max_{W'} \ln \left(W - W' \right) + \beta \left(A + B \ln W' \right)$$
(17)

Finding v: an example with closed form solution

- Let's assume that $u(c) = \ln c$ in (11).
- Also, let's conjecture that the value function has the form

$$v(W) = A + B \ln W \tag{16}$$

- We have to find A, B such that (16) satisfies (11).
- Plug into (11):

$$A + B \ln W = \max_{W'} \ln \left(W - W' \right) + \beta \left(A + B \ln W' \right)$$
(17)

• FOC wrt W':

$$\frac{1}{W - W'} = \frac{\beta B}{W'}$$

$$W' = \beta B(W - W')$$

$$W' = \frac{\beta B}{1 + \beta B} W$$

$$\equiv g(W)$$

25/54

Finding v: an example with closed form solution

• Let's use this policy function in (17):

$$v(W) = \ln (W - g(W)) + \beta (A + B \ln g(W))$$

= $\ln \frac{W}{1 + \beta B} + \beta \left(A + B \ln \left[\frac{\beta B}{1 + \beta B}W\right]\right)$

• Now we collect all terms ln W on the RHS, and put all else into the constant A:

$$v(W) = A + \ln W + \beta B \ln W$$
$$= A + (1 + \beta B) \ln W$$

• We conjectured that $v(W) = A + B \ln W$. Hence

$$B = (1 + \beta B)$$
$$B = \frac{1}{1 - \beta}$$

• Policy function: $g(W) = \beta W$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Guess-and-Verify method

- Note that we guessed a functional form for v.
- And then we verified that it consitutues a solution to the functional equation.
- This method (guess and verify) would in principle always work, but it's not very practical.

Solving the Cake problem with $T < \infty$

- When time is finite, solving this DP is fairly simple.
- If we know the value in the final period, we can simply go backwards in time.
- In period T there is no point setting W' > 0. Therefore

$$v_T(W) = u(W) \tag{18}$$

- Notice that we index the value function with time in this case:
 - it's not the same to have W in period 1 as it is to have W in period T. Right?
- But if we know v_T for all values of W, we can construct v_{T-1} !

Backward Induction and the Cake Problem

We know that

$$v_{T-1}(W_{T-1}) = \max_{W_T \in [0, W_{T-1}]} u(W_{T-1} - W_T) + \beta v_T(W_T)$$

=
$$\max_{W_T \in [0, W_{T-1}]} u(W_{T-1} - W_T) + \beta u(W_T)$$

=
$$\max_{W_T \in [0, W_{T-1}]} \ln(W_{T-1} - W_T) + \beta \ln W_T$$

• FOC wrt W_T :

$$\frac{1}{W_{T-1} - W_T} = \frac{\beta}{W_T}$$
$$W_T = \frac{\beta}{1+\beta}W_{T-1}$$

• Thus the value function in T-1 is

$$v_{T-1}(W_{T-1}) = \ln\left(\frac{W_{T-1}}{\beta}\right) + \beta \ln\left(\frac{\beta}{1+\beta}W_{T-1}\right)$$

29/54

Backward Induction and the Cake Problem

• Correspondingly, in T-2:

$$v_{T-2}(W_{T-2}) = \max_{W_{T-1} \in [0, W_{T-2}]} u(W_{T-2} - W_{T-1}) + \beta v_{T-1}(W_{T-1})$$

=
$$\max_{W_{T-1} \in [0, W_{T-2}]} u(W_{T-2} - W_{T-1})$$

+
$$\beta \left[\ln \left(\frac{W_{T-1}}{\beta} \right) + \beta \ln \left(\frac{\beta}{1+\beta} W_{T-1} \right) \right]$$

- FOC wrt W_{T-2} .
- and so on until t = 1.
- Again, without log utility, this quickly get intractable. But your computer would proceed in the same backwards iterating fashion.
- Notice that with *T* finite, there is *no fixed point problem* if we do backwards induction.

Dynamic Programming Theory

- Let's go back to the infinite horizon problem.
- Let's define a general DP as follows.
- Payoffs over time are

$$U = \sum_{t=1}^{\infty} \beta^{t} \tilde{u}\left(s_{t}, c_{t}\right)$$

where $\beta < 1$ is a discount factor, s_t is the state, c_t is the control.

- The state (vector) evolves as $s_{t+1} = h(s_t, c_t)$.
- All past decisions are contained in *s*_t.

DP Theory: more assumptions

- Let $c_t \in C(s_t), s_t \in S$ and assume \tilde{u} is bounded in $(c,s) \in C \times S$.
- Stationarity: neither payoff \tilde{u} nor transition h depend on time.
- Modify \tilde{u} to u s.t. in terms of s' (as in cake: c = W W'):

$$v(s) = \max_{s' \in \Gamma(s)} u(s, s') + \beta v(s')$$
(19)

- Γ(s) is the constraint set (or feasible set) for s' when the current state is s:
 - before that was $\Gamma(W) = [0, W]$
- We will work towards one possible set of sufficient conditions for the existence to the functional equation. Please consult Stokey and Lucas for greater detail.

Proof of Existence

Theorem

Assume that u(s, s') is real-valued, continuous, and bounded, that $\beta \in (0, 1)$, and that the constraint set $\Gamma(s)$ is nonempty, compact, and continuous. Then there exists a unique function v(s) that solves (19).

Proof.

Stokey and Lucas (1989, theoreom 4.6).

The Bellman Operator T(W)

• Define an operator Ton function W as T(W):

$$T(W)(s) = \max_{s' \in \Gamma(s)} u(s, s') + \beta W(s')$$
(20)

- The Bellman operator takes a guess of current value function *W*, performs the maximization, and returns the next value function.
- Any v(s) = T(v)(s) is a solution to (19).
- So we need to find a fixed point of T(W).
- This argument proceeds by showing that T(W) is a **contraction**.
- Info: This relies on the Banach (or contraction) mapping theorem.
- There are two sufficiency conditions we can check: Monotonicity, and Discounting.

The Blackwell (1965) sufficiency conditions: Monotonicity

- Need to check Monotonicity and Discounting of the operator T(W).
- Monotonicity means that

$$W(s) \ge Q(s) \implies T(W)(s) \ge T(Q)(s), \forall s$$

• Let $\phi_Q(s)$ be the policy function of

$$Q(s) = \max_{s' \in \Gamma(s)} u(s, s') + \beta Q(s')$$

and assume $W(s) \ge Q(s)$. Then

 $T(W)(s) = \max_{s' \in \Gamma(s)} u(s,s') + \beta W(s') \ge u(s,\phi_Q(s)) + \beta W(\phi_Q(s))$ $\ge u(s,\phi_Q(s)) + \beta Q(\phi_Q(s)) \equiv T(Q)(s)$

Show example with $W(s) = \log(s^2), Q(s) = \log(s), s > 0$

The Blackwell (1965) sufficiency conditions: Discounting

- Adding constant *a* to *W* leads *T*(*W*) to increase less than *a*.
- In other words

$$T(W+a)(s) \le T(W)(s) + \beta a, \beta \in [0,1)$$

- discounting because $\beta < 1$.
- To verify on the Bellman operator:

$$T(W+a)(s) = \max_{s'\in\Gamma(s)} u(s,s') + \beta \left[W(s') + a\right] = T(W)(s) + \beta a$$

- Intuition: the discounting property is key for a contraction.
- In successive iterations on T(W) we add only a fraction β of W.

Contraction Mapping Theorem (CMT)

- The CMT tells us that for a function of type $T(\cdot)$
 - There is a unique fixed point. (from previous Stokey-Lucas proof.)
 - 2 This fixed point can be reached by iterating on *T* in (20) using an arbitrary starting point.
- Very useful to find a solution to (19):
 - **1** Start with an initial guess $V_0(s)$.
 - 2 Apply the Bellman operator to get $V_1 = T(V_0)$

if V₁(s) = V₀(s) we have a solution, done.
 if not, continue:

- 3 Apply the Bellman operator to get V₂ = T(V₁)
 4 etc until T(V) = V.
- Again: if T(V) is a contraction, this will converge.
- This technique is called value function iteration.

Value Function inherits Properties of *u*

Theorem

Assume $\underline{u(s,s')}$ is real-values, continuous, **concave** and bounded, $0 < \beta < 1$, that *S* is a convex subset of \mathbb{R}^k and that the constraint set $\Gamma(s)$ is non-empty, compact-valued, convex, and continuous. Then the unique solution to (19) is **strictly concave.** Furthermore, the policy $\phi(s)$ is a continuous, single-valued function.

Proof.

See theorem 4.8 in Stokey and Lucas (1989).

Value Function inherits Properties of *u*

- proof shows that if V is concave, so is T(V).
- Given u(s,s') is concave, let the initial guess be

$$V_0(s) = \max_{s' \in \Gamma(s)} u(s, s')$$

and therefore $V_0(s)$ is concave.

• Since T preserves concavity, $V_1 = T(V_0)$ is concave etc.

VFI Example: Growth Model

$$V(k) = \max_{0 < k' < f(k)} \ln(f(k) - k') + \beta V(k')$$
(21)

$$f(k) = k^{\alpha}$$
(22)

$$k_0 \text{ given}$$
(23)

VFI Example: Growth Model

R Code

```
# parameters
alpha = 0.65
beta = 0.95
grid_max = 2 # upper bound of capital grid
n = 150
kgrid = seq(from=1e-6,to=grid_max,len=n) # equispaced
f <- function(x,alpha){x^alpha} # defines the production</pre>
```

```
# value function iteration (VFI)
VFI <- function (grid,V0,maxIter){
    w = matrix(0,length(grid),maxIter)
    w[,1] = V0 # initial condition
    for (i in 2:maxIter){
        w[,i] = bellman_operator(grid, w[,i-1])
    }
    return(w)
}</pre>
```

VFI Example

Starting from a $\log(k)$ scaled initial value

VFI Example

Starting from a random initial value

43/54

Stochastic Dynamic Programming

- There are several ways to include uncertainty into this framework here is one:
- Let's assume the existence of a variable ϵ , representing a shock.
- Assumptions:
 - 1 ϵ_t affects the agent's payoff in period t.
 - **2** ϵ_t is exogenous: the agent cannot influence it.
 - \$\vee\$ \$\vee\$ t depends only on \$\varepsilon_{t-1}\$ (and not on \$\vee\$_{t-2}\$. although we could add \$\vee\$_{t-1}\$ as a state variable!)
 - **4** The distribution of $\epsilon' | \epsilon$ is time-invariant.
- Defined in this way, we call ϵ a first-order Markov process.

Definition

A stochastic process $\{x_t\}$ is said to have the *Markov property* if for all $k \ge 1$ and all t,

$$\Pr(x_{t+1}|x_t, x_{t-1}, \dots, x_{t-k}) = \Pr(x_{t+1}|x_t).$$

We assume that $\{\epsilon_t\}$ has this property, and characterize it by a *Markov Chain*.

Markov Chains

Definition

A time-invariant *n*-State Markov Chain consists of:

- 1 *n* vectors of size (n, 1): $e_i, i = 1, ..., n$ such that the *i*-th entry of e_i is one and all others zero,
- 2 one (*n*, *n*) **transition matrix** *P*, giving the probability of moving from state *i* to state *j*, and
- **3** a vector $\pi_{0i} = \Pr(x_0 = e_i)$ holding the probability of being in state *i* at time 0.

•
$$e_1 = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}'$$
, $e_2 = \begin{bmatrix} 0 & 1 & \dots & 0 \end{bmatrix}'$, ... are just a way of saying "x is in state *i*".

• The elements of *P* are

$$P_{ij} = \Pr\left(x_{t+1} = e_j | x_t = e_i\right)$$

Assumptions on P and π_0

1 For i = 1, ..., n, the matrix P satisfies

$$\sum_{j=1}^{n} P_{ij} = 1$$

2 The vector π_0 satisfies

$$\sum_{i=1}^n \pi_{0i} = 1$$

- In other words, *P* is a *stochastic matrix*, where each row sums to one:
 - row *i* has the probabilities to move to any possible state *j*. A valid probability distribution must sum to one.
- *P* defines the probabilities of moving from current state *i* to future state *j*.
- π_0 is a valid initial probability distribution.

Transition over two periods

- The probability to move from i to j over two periods is given by P_{ij}^2 .
- Why:

$$\Pr (x_{t+2} = e_j | x_t = e_i) =$$

$$\sum_{h=1}^{n} \Pr (x_{t+2} = e_j | x_{t+1} = e_h) \Pr (x_{t+1} = e_h | x_{t+1} = e_i) =$$

$$\sum_{h=1}^{n} P_{ih} P_{hj} = P_{ij}^{(2)}$$

• Show 3-State example to illustrate this.

Conditional Expectation from a Markov Chain

- What is expected value of x_{t+1} given $x_t = e_i$?
- Simple:

 $E[x_{t+1}|x_t = e_i] = \text{values of } \mathbf{x} \times \text{Prob of those values}$ $= \sum_{j=1}^n e_j \times \Pr(x_{t+1} = e_j|e_i)$ $= \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} (P_i)'$

where P_i is the *i*-th row of *P*, and $(P_i)'$ is the transpose of that row (i.e. a column vector).

• What is the conditional expectation of a function *f*(*x*), i.e. what is

$$E\left[f(x_{t+1})|x_t=e_i\right]?$$

Back to Stochastic DP

• With the Markovian setup, we can rewrite (19) as

$$v(s,\epsilon) = \max_{s'\in\Gamma(s,\epsilon)} u(s,s',\epsilon) + \beta E\left[v(s',\epsilon')|\epsilon\right]$$
(24)

Theorem

If $u(s,s',\epsilon)$ is real-valued, continuous, concave, and bounded, if $\beta \in (0,1)$, and constraint set is compact and convex, then

- **1** there exists a unique value function $v(s, \epsilon)$ that solves (24).
- **2** there exists a stationary policy function $\phi(s, \epsilon)$.

Proof.

This is a direct application of Blackwell's sufficiency conditions:

- **1** with $\beta < 1$ discounting holds for the operator on (24).
- 2 Monotonicity can be established as before.

Optimality in the Stochastic DP

• As before, we can derive the first order conditions on (24):

$$u_{s'}(s,s',\epsilon) + \beta E\left[V_{s'}(s',\epsilon')|\epsilon\right] = 0$$

• differentiating (24) w.r.t. s to find $V_{s'}(s', \epsilon')$ we find

$$u_{s'}(s,s',\epsilon) + \beta E \left[u_{s'}(s',s'',\epsilon') | \epsilon \right] = 0$$

DP Application 1: The Deterministic Growth Model

- We will now solve the deterministic growth model with dynamic programming.
- Remember:

$$V(k) = \max_{c=f(k)-k' \ge 0} u(c) + \beta V(k')$$
 (25)

- Assume $f(k) = k^{\alpha}$, $u(c) = \ln c$.
- We will use *discrete state DP*. We cannot hope to know V at all k ∈ ℝ₊. Therefore we compute V at a finite set of points, called a *grid*.
- Hence, we must also choose those grid points.

DP Application: Discretize state and solution space

• There are many ways to approach this problem:

$$V(k) = \max_{k' \in [0,k^{\alpha}]} \ln(k^{\alpha} - k') + \beta V(k')$$
 (26)

- Probably the easiest goes like this:
 - **1** Discretize V onto a grid of n points $\mathcal{K} \equiv \{k_1, k_2, \dots, k_n\}$.
 - 2 Discretize control k': change max_{k'∈[0,k^a]} to max_{k'∈K}, i.e. choose k' from the discrete grid.
 - **3** Guess an initial function $V_0(k)$.
 - Iterate on (26) until d (V_{t+1} V_t) < ε, where d() is a measure of distance, and ε > 0 is a tolerance level chosen by you.

References

- Jerome Adda and Russell W Cooper. Dynamic economics: quantitative methods and applications. MIT press, 2003.
- Lars Ljungqvist and Thomas J Sargent. *Recursive macroeconomic theory*. MIT press, 2012.
- RE Lucas and NL Stokey. *Recursive Methods in Dynamic Economics*. Harvard University Press, Cambridge MA, 1989.