
Introduc�on to Dynamic Programming
ScPo Graduate Labor

February 21, 2018

1 / 54

Table of contents

Dynamic ProgrammingDynamic Programming: Piece of CakeDynamic Programming TheoryStochas�c Dynamic Programming

2 / 54

Introduc�on

• This lecture will introduce you to a powerful technique called
dynamic programming (DP).

• This set of slides is very similar to the one from your grad macrocourse. (same teacher.)
• We will repeat much of that material today.
• Next �me will talk about a paper that uses DP to solve adynamic lifecycle model.

3 / 54

References

• Before we start, some useful references on DP:
1 Adda and Cooper (2003): Dynamic Economics.
2 Ljungqvist and Sargent (2012) (LS): Recursive MacroeconomicTheory.
3 Lucas and Stokey (1989): Recursive Methods in EconomicsDynamics.

• They are ordered in increasing level of mathema�cal rigor. Addaand Cooper is a good overview, LS is rather short.

4 / 54

Cake Ea�ng
• You are given a cake of size W1 and need to decide how much ofit to consume in each period t = 1, 2, 3, . . .
• Cake consump�on valued as u(c), u is concave, increasing,differen�able and limc→0 u′(c) = ∞.
• Life�me u�lity is

U =
T

∑
t=1

βt−1u(ct), β ∈ [0, 1] (1)
• Let’s assume the cake does not depreciate/perish, s.t. the law of
mo�on of cake is

Wt+1 = Wt − ct, t = 1, 2, ..., T (2)
i.e. cake in t + 1 is this cake in t minus whatever you have of it in t.

• How to decide on the op�mal consump�on sequence {ct}T
t=1?

5 / 54

A sequen�al Problem
• This problem can be wri�en as

v (W1) = max
{Wt+1,ct}T

t=1

T

∑
t=1

βt−1u(ct) (3)
s.t.

Wt+1 = Wt − ct

ct, Wt+1 ≥ 0 and W1 given.
• No�ce that the law of mo�on (2) implies that

W1 = W2 + c1

= (W3 + c2) + c1

= . . .

= WT+1 +
T

∑
t=1

ct (4)
6 / 54

Solving the sequen�al Problem
• Formulate and solve the Lagrangian for (3) with (4):

L =
T

∑
t=1

βt−1u(ct) + λ

[
W1 −WT+1 −

T

∑
t=1

ct

]
+ φ [WT+1]

• First order condi�ons:
∂L
∂ct

= 0 =⇒ βt−1u′(ct) = λ ∀t (5)
∂L

∂WT+1
= 0 =⇒ λ = φ (6)

• φ is lagrange mul�plier on non-nega�vity constraint for WT+1.• we ignore the constraint ct ≥ 0 by the Inada assump�on.

7 / 54

Solving the sequen�al Problem
• Formulate and solve the Lagrangian for (3) with (4):

L =
T

∑
t=1

βt−1u(ct) + λ

[
W1 −WT+1 −

T

∑
t=1

ct

]
+ φ [WT+1]

• First order condi�ons:
∂L
∂ct

= 0 =⇒ βt−1u′(ct) = λ ∀t (5)
∂L

∂WT+1
= 0 =⇒ λ = φ (6)

• φ is lagrange mul�plier on non-nega�vity constraint for WT+1.• we ignore the constraint ct ≥ 0 by the Inada assump�on.
7 / 54

Interpre�ng the sequen�al solu�on
• From (5) we know that βt−1u′(ct) = λ holds in each t.
• Therefore

βt−1u′(ct) = λ

= β(t+1)−1u′(ct+t)

i.e. we get the Euler Equa�on
u′(ct) = βu′(ct+1) (7)

• along an op�mal sequence {c∗t }T
t=1, each adjacent period

t, t + 1 must sa�sfy (7).
• If (7) holds, one cannot increase u�lity by moving some ct to

ct+1.
• What about devia�on from {c∗t }T

t=1 between t and t + 2?
8 / 54

Is the Euler Equa�on enough?
• Is the Euler Equa�on sufficient for op�mality?

• No! We could sa�sfy (7), but have WT > cT, i.e. there is somecake le�.
• What does this remind you of?
• Discuss how this relates to the value of mul�pliers λ, φ.
• Solu�on is given by ini�al condi�on (W1), terminal condi�on

WT+1 = 0 and path in EE.
• Call this solu�on the value func�on

v (W1)

• v (W1) is the maximal u�lity flow over T periods given ini�alcake W1.

9 / 54

Is the Euler Equa�on enough?
• Is the Euler Equa�on sufficient for op�mality?
• No! We could sa�sfy (7), but have WT > cT, i.e. there is somecake le�.
• What does this remind you of?
• Discuss how this relates to the value of mul�pliers λ, φ.
• Solu�on is given by ini�al condi�on (W1), terminal condi�on

WT+1 = 0 and path in EE.
• Call this solu�on the value func�on

v (W1)

• v (W1) is the maximal u�lity flow over T periods given ini�alcake W1.
9 / 54

Digression: Power U�lity Func�ons
• We’ll look at a specific class of U func�ons: Power U�lity , or
isoelas�c u�lity func�ons.

• This class includes the hyperbolic or constant rela�ve riskaversion func�ons.
• It’s defined as

u(c) =

{
c1−γ

1−γ if γ 6= 1

ln(c) if γ = 1.

• The coefficient of rela�ve risk aversion is γ i.e. a constant.
• Your risk aversion does not depend on your level of wealth.

10 / 54

Code for CRRA u�lity func�on

this is julia

function u(c,gamma)

if gamma==1

return log(c)

else

return (1/(1-gamma)) * c^(1-gamma)

end

end

11 / 54

Code for plot
using PGFPlots

using LaTeXStrings

p=Axis([

Plots.Linear(x->u(x,0),(0.5,2),legendentry=L"$\gamma=0$"),

Plots.Linear(x->u(x,1),(0.5,2),legendentry=L"$\gamma=1$"),

Plots.Linear(x->u(x,2),(0.5,2),legendentry=L"$\gamma=2$"),

Plots.Linear(x->u(x,5),(0.5,2),legendentry=L"$\gamma=5$")

],xlabel=L"c",ylabel=L"$u(c)$",style="grid=both")

p.legendStyle = "{at={(1.05,1.0)},anchor=north west}"

save("images/dp/CRRA.tex",p,include_preamble=false)

then, next slide just has \input{images/dp/CRRA}

12 / 54

CRRA func�ons

0.5 1 1.5 2

−4

−2

0

2

c

u(
c)

γ = 0
γ = 1
γ = 2
γ = 5

13 / 54

CRRA u�lity Proper�es
The next 5 slides were contributed by [click!]Cormac O’Dea @ Yale

• We had:
u(c) =

{
c1−γ

1−γ if γ 6= 1

ln(c) if γ = 1.

γ−1 is the elas�city of intertemporal subs�tu�on (IES)
• IES is defined as the percent change in consump�on growth per
percent increase in the net interest rate.

• It is generally accepted that γ ≥ 1, in which case, for c ∈ R+

u(c) < 0, limc→0 u(c) = −∞, limc→+∞ u(c) = 0
u′(c) > 0, limc→0 u′(c) = +∞, limc→+∞ u′(c) = 0

14 / 54

https://sites.google.com/site/cormacodea/home

CRRA u�lity Proper�es
The next 5 slides were contributed by [click!]Cormac O’Dea @ Yale

• We had:
u(c) =

{
c1−γ

1−γ if γ 6= 1

ln(c) if γ = 1.

γ−1 is the elas�city of intertemporal subs�tu�on (IES)
• IES is defined as the percent change in consump�on growth per
percent increase in the net interest rate.

• It is generally accepted that γ ≥ 1, in which case, for c ∈ R+

u(c) < 0, limc→0 u(c) = −∞, limc→+∞ u(c) = 0
u′(c) > 0, limc→0 u′(c) = +∞, limc→+∞ u′(c) = 0

14 / 54

https://sites.google.com/site/cormacodea/home

CRRA u�lity: solu�on I
• Let’s modify our cake ea�ng problem.
• Wt ⇒ at, and we introduce gross interest R = 1 + r. (fornon-growing cake just take r = 0).

max
(c1,...,cT)∈(R+)T

T

∑
t=1

βt−1 c1−γ
t

1− γ
s.t T

∑
t=1

R1−tct ≤ a1

• Euler equa�ons are necessary for interior solu�ons:
c−γ

t = βRc−γ
t+1 ⇒ ct = (βR)−

1
γ ct+1 for t = 1, . . . , T− 1

• By successive subs�tu�on:
ct = (βR)

t−1
γ c1

15 / 54

CRRA u�lity: solu�on I
• Let’s modify our cake ea�ng problem.
• Wt ⇒ at, and we introduce gross interest R = 1 + r. (fornon-growing cake just take r = 0).

max
(c1,...,cT)∈(R+)T

T

∑
t=1

βt−1 c1−γ
t

1− γ
s.t T

∑
t=1

R1−tct ≤ a1

• Euler equa�ons are necessary for interior solu�ons:
c−γ

t = βRc−γ
t+1 ⇒ ct = (βR)−

1
γ ct+1 for t = 1, . . . , T− 1

• By successive subs�tu�on:
ct = (βR)

t−1
γ c1

15 / 54

CRRA u�lity: solu�on I
• Let’s modify our cake ea�ng problem.
• Wt ⇒ at, and we introduce gross interest R = 1 + r. (fornon-growing cake just take r = 0).

max
(c1,...,cT)∈(R+)T

T

∑
t=1

βt−1 c1−γ
t

1− γ
s.t T

∑
t=1

R1−tct ≤ a1

• Euler equa�ons are necessary for interior solu�ons:
c−γ

t = βRc−γ
t+1 ⇒ ct = (βR)−

1
γ ct+1 for t = 1, . . . , T− 1

• By successive subs�tu�on:
ct = (βR)

t−1
γ c1

15 / 54

CRRA u�lity: solu�on II
• The budget constraint and op�mality condi�on imply

a1 = ∑
t=1,...,T

R1−tct

= c1 ∑
t=1,...,T

(
β

1
γ R

1−γ
γ

)t−1

= c1 ∑
t=1,...,T

αt−1

• The solu�on for t = 1, . . . , T:
c1 =

1− α

1− αT a1 and ct =
1− α

1− αT (βR)
t−1

γ a1

16 / 54

CRRA u�lity: solu�on II
• The budget constraint and op�mality condi�on imply

a1 = ∑
t=1,...,T

R1−tct

= c1 ∑
t=1,...,T

(
β

1
γ R

1−γ
γ

)t−1

= c1 ∑
t=1,...,T

αt−1

• The solu�on for t = 1, . . . , T:
c1 =

1− α

1− αT a1 and ct =
1− α

1− αT (βR)
t−1

γ a1

16 / 54

CRRA u�lity: solu�on III

In general, if the op�misa�on problem starts at �me t as follows
max

(ct,...,cT)∈(R+)T−t+1

T

∑
τ=t

βτ−t c1−γ
τ

1− γ
s.t T

∑
τ=t

Rτ−tcτ ≤ aτ

the solu�on for ct is
ct =

1− α

1− αT−t+1 at

This is the consump�on func�on, a linear func�on of assets if u�lity isCRRA

17 / 54

CRRA consump�on: ct =
1−α

1−αT (βR)
t−1

γ a1

20 30 40 50 60

2

4

6

8

·10−2

t

c

r = 1%
r = 2.5%
r = 5%

Figure: βR determines the profile of the solu�on.
β = 1.025−1, γ = 2, a1 = 20 18 / 54

The Dynamic Programming approach with T = ∞

• Let’s consider the case T = ∞.
• In other words

max
{Wt+1,ct}∞

t=1

∞

∑
t=1

βt−1u(ct) (8)
s.t.

Wt+1 = Wt − ct (9)
• Under some condi�ons, this can be wri�en as

v(Wt) = max
ct∈[0,Wt]

u (ct) + βv(Wt − ct) (10)
• Some Defini�ons:

• Call W the state variable,• and c the control variable.• (9) is the law of mo�on or transi�on equa�on.

19 / 54

The Dynamic Programming approach with T = ∞

• Note that t is irrelevant in (10). Only W ma�ers.
• Subs�tu�ng c = W−W′, where x′ is next period’s value of x

v(W) = max
W′∈[0,W]

u
(
W−W′

)
+ βv(W′) (11)

• This is the Bellman Equa�on a�er Richard Bellman.
• It is a func�onal equa�on (v is on both sides!).
• Our problem has changed from finding {Wt+1, ct}∞

t=1 to findingthe func�on v.
This is called a fixed point problem:
Find a func�on v such that plugging in W on the RHS and doing themaximiza�on, we end up with the same v on the LHS.

20 / 54

Value Func�on and Policy Func�on
• Great! We have reduced an infinite-length sequen�al problemto a one-dimensional maximiza�on problem.
• But we have to find 2(!) unknown func�ons! Why two?
• The maximizer of the RHS of (11) is the policy func�on,

g (W) = c∗.
• This func�on gives the op�mal value of the control variable,given the state.
• It sa�sfies

v (W) = u (g (W)) + βv (g (W)) (12)
(you can see that the max operator vanished, because g(W) isthe op�mal choice)

• In prac�ce, finding value and policy func�on is the oneopera�on.
21 / 54

Using Dynamic Programming to solve the Cake problem
• Let’s pretend that we knew v for now:

v(W) = max
W′∈[0,W]

u
(
W−W′

)
+ βv(W′)

• Assuming v is differen�able, the FOC wrt W′

u′(c) = βv′
(
W′
) (13)

• Taking the par�al deriva�ve w.r.t. the state W, we get the
envelope condi�on

v′(W) = u′(c) (14)
• This needs to hold in each period. Therefore

v′(W′) = u′(c′) (15)

22 / 54

Using Dynamic Programming to solve the Cake problem

• Combining (13) with (15)
u′(c) (13)

= βv′
(
W′
)

(15)
= βu′(c′)

we obtain the usual euler equa�on.
• Any solu�on vwill sa�sfy this necessary condi�on, as in thesequen�al case.

• So far, so good. But we s�ll don’t know v!

23 / 54

Using Dynamic Programming to solve the Cake problem

• Combining (13) with (15)
u′(c) (13)

= βv′
(
W′
)

(15)
= βu′(c′)

we obtain the usual euler equa�on.
• Any solu�on vwill sa�sfy this necessary condi�on, as in thesequen�al case.
• So far, so good. But we s�ll don’t know v!

23 / 54

Finding v

• Finding the Bellman equa�on v and associated policy func�on gis not easy.
• In general, it is impossible to find an analy�c expression, i.e. todo it by hand.
• Most of �mes you will use a computer to solve for it.
• preview: The ra�onale for why we can find it has to do with thefixed point nature of the problem. We will see that under somecondi�ons we can always find that fixed point.
• We will look at a par�cular example now, that we can solve byhand.

24 / 54

Finding v: an example with closed form solu�on
• Let’s assume that u(c) = ln c in (11).
• Also, let’s conjecture that the value func�on has the form

v(W) = A + B ln W (16)
• We have to find A, B such that (16) sa�sfies (11).
• Plug into (11):

A + B ln W = max
W′

ln
(
W−W′

)
+ β

(
A + B ln W′

) (17)

• FOC wrt W′:
1

W−W′
=

βB
W′

W′ = βB(W−W′)

W′ =
βB

1 + βB
W

≡ g(W)

25 / 54

Finding v: an example with closed form solu�on
• Let’s assume that u(c) = ln c in (11).
• Also, let’s conjecture that the value func�on has the form

v(W) = A + B ln W (16)
• We have to find A, B such that (16) sa�sfies (11).
• Plug into (11):

A + B ln W = max
W′

ln
(
W−W′

)
+ β

(
A + B ln W′

) (17)
• FOC wrt W′:

1
W−W′

=
βB
W′

W′ = βB(W−W′)

W′ =
βB

1 + βB
W

≡ g(W)

25 / 54

Finding v: an example with closed form solu�on
• Let’s use this policy func�on in (17):

v(W) = ln (W− g(W)) + β (A + B ln g(W))

= ln
W

1 + βB
+ β

(
A + B ln

[
βB

1 + βB
W
])

• Now we collect all terms ln W on the RHS, and put all else intothe constant A:
v(W) = A + ln W + βB ln W

= A + (1 + βB) ln W

• We conjectured that v(W) = A + B ln W. Hence
B = (1 + βB)

B =
1

1− β

• Policy func�on: g(W) = βW
26 / 54

The Guess-and-Verify method

• Note that we guessed a func�onal form for v.
• And then we verified that it consitutues a solu�on to thefunc�onal equa�on.
• This method (guess and verify) would in principle always work,but it’s not very prac�cal.

27 / 54

Solving the Cake problem with T < ∞

• When �me is finite, solving this DP is fairly simple.
• If we know the value in the final period, we can simply gobackwards in �me.
• In period T there is no point se�ng W′ > 0. Therefore

vT(W) = u(W) (18)
• No�ce that we index the value func�on with �me in this case:

• it’s not the same to have W in period 1 as it is to have W inperiod T. Right?
• But if we know vT for all values of W, we can construct vT−1!

28 / 54

Backward Induc�on and the Cake Problem
• We know that

vT−1 (WT−1) = max
WT∈[0,WT−1]

u (WT−1 −WT) + βvT (WT)

= max
WT∈[0,WT−1]

u (WT−1 −WT) + βu (WT)

= max
WT∈[0,WT−1]

ln (WT−1 −WT) + β ln WT

• FOC wrt WT:
1

WT−1 −WT
=

β

WT

WT =
β

1 + β
WT−1

• Thus the value func�on in T− 1 is
vT−1 (WT−1) = ln

(
WT−1

β

)
+ β ln

(
β

1 + β
WT−1

)
29 / 54

Backward Induc�on and the Cake Problem
• Correspondingly, in T− 2:

vT−2 (WT−2) = max
WT−1∈[0,WT−2]

u (WT−2 −WT−1) + βvT−1 (WT−1)

= max
WT−1∈[0,WT−2]

u (WT−2 −WT−1)

+ β

[
ln
(

WT−1

β

)
+ β ln

(
β

1 + β
WT−1

)]
• FOC wrt WT−2.
• and so on un�l t = 1.
• Again, without log u�lity, this quickly get intractable. But yourcomputer would proceed in the same backwards itera�ngfashion.
• No�ce that with T finite, there is no fixed point problem if we dobackwards induc�on.

30 / 54

Dynamic Programming Theory

• Let’s go back to the infinite horizon problem.
• Let’s define a general DP as follows.
• Payoffs over �me are

U =
∞

∑
t=1

βtũ (st, ct)

where β < 1 is a discount factor, st is the state, ct is the control.
• The state (vector) evolves as st+1 = h(st, ct).
• All past decisions are contained in st.

31 / 54

DP Theory: more assump�ons
• Let ct ∈ C(st), st ∈ S and assume ũ is bounded in
(c, s) ∈ C× S.

• Sta�onarity: neither payoff ũ nor transi�on h depend on �me.
• Modify ũ to u s.t. in terms of s′ (as in cake: c = W−W′):

v(s) = max
s′∈Γ(s)

u(s, s′) + βv(s′) (19)
• Γ(s) is the constraint set (or feasible set) for s′ when the currentstate is s:

• before that was Γ(W) = [0, W]

• We will work towards one possible set of sufficient condi�onsfor the existence to the func�onal equa�on. Please consultStokey and Lucas for greater detail.

32 / 54

Proof of Existence

Theorem
Assume that u(s, s′) is real-valued, con�nuous, and bounded, that
β ∈ (0, 1), and that the constraint set Γ(s) is nonempty, compact,
and con�nuous. Then there exists a unique func�on v(s) that solves
(19).

Proof.Stokey and Lucas (1989, theoreom 4.6).

33 / 54

The Bellman Operator T(W)

• Define an operator Ton func�on W as T(W):

T(W)(s) = max
s′∈Γ(s)

u(s, s′) + βW(s′) (20)
• The Bellman operator takes a guess of current value func�on W,performs the maximiza�on, and returns the next value func�on.
• Any v(s) = T(v)(s) is a solu�on to (19).
• So we need to find a fixed point of T(W).
• This argument proceeds by showing that T(W) is a contrac�on.
• Info: This relies on the Banach (or contrac�on) mapping
theorem.

• There are two sufficiency condi�ons we can check:Monotonicity, and Discoun�ng.

34 / 54

The Blackwell (1965) sufficiency condi�ons: Monotonicity
• Need to check Monotonicity and Discoun�ng of the operator

T(W).
• Monotonicitymeans that

W(s) ≥ Q(s) =⇒ T(W)(s) ≥ T(Q)(s), ∀s

• Let φQ(s) be the policy func�on of
Q(s) = max

s′∈Γ(s)
u(s, s′) + βQ(s′)

and assume W(s) ≥ Q(s). Then
T(W)(s) = max

s′∈Γ(s)
u(s, s′) + βW(s′) ≥ u(s, φQ(s)) + βW(φQ(s))

≥ u(s, φQ(s)) + βQ(φQ(s)) ≡ T(Q)(s)

Show example with W(s) = log(s2), Q(s) = log(s), s > 0

35 / 54

The Blackwell (1965) sufficiency condi�ons: Discoun�ng
• Adding constant a to W leads T(W) to increase less than a.
• In other words

T(W + a)(s) ≤ T(W)(s) + βa, β ∈ [0, 1)

• discoun�ng because β < 1.
• To verify on the Bellman operator:

T(W+ a)(s) = max
s′∈Γ(s)

u(s, s′)+ β
[
W(s′) + a

]
= T(W)(s)+ βa

• Intui�on: the discoun�ng property is key for a contrac�on.
• In successive itera�ons on T(W) we add only a frac�on β of W.

36 / 54

Contrac�on Mapping Theorem (CMT)
• The CMT tells us that for a func�on of type T(·)

1 There is a unique fixed point. (from previous Stokey-Lucas proof.)
2 This fixed point can be reached by itera�ng on T in (20) using an

arbitrary star�ng point.

• Very useful to find a solu�on to (19):
1 Start with an ini�al guess V0(s).2 Apply the Bellman operator to get V1 = T(V0)

1 if V1(s) = V0(s) we have a solu�on, done.2 if not, con�nue:
3 Apply the Bellman operator to get V2 = T(V1)4 etc un�l T(V) = V.

• Again: if T(V) is a contrac�on, this will converge.
• This technique is called value func�on itera�on.

37 / 54

Value Func�on inherits Proper�es of u

Theorem
Assume u(s, s′) is real-values, con�nuous, concave and bounded,
0 < β < 1, that S is a convex subset of Rk and that the constraint set
Γ(s) is non-empty, compact-valued, convex, and con�nuous. Then the
unique solu�on to (19) is strictly concave. Furthermore, the policy
φ(s) is a con�nuous, single-valued func�on.

Proof.See theorem 4.8 in Stokey and Lucas (1989).

38 / 54

Value Func�on inherits Proper�es of u

• proof shows that if V is concave, so is T(V).
• Given u(s, s′) is concave, let the ini�al guess be

V0(s) = max
s′∈Γ(s)

u(s, s′)

and therefore V0(s) is concave.
• Since T preserves concavity, V1 = T(V0) is concave etc.

39 / 54

VFI Example: Growth Model

V(k) = max
0<k′<f (k)

ln(f (k)− k′) + βV(k′) (21)
f (k) = kα (22)

k0 given (23)

40 / 54

VFI Example: Growth Model
R Code

parameters

alpha = 0.65

beta = 0.95

grid_max = 2 # upper bound of capital grid

n = 150

kgrid = seq(from=1e-6,to=grid_max,len=n) # equispaced grid

f <- function(x,alpha){x^alpha} # defines the production function f(k)

value function iteration (VFI)

VFI <- function (grid,V0,maxIter){

w = matrix(0,length(grid),maxIter)

w[,1] = V0 # initial condition

for (i in 2:maxIter){

w[,i] = bellman_operator(grid, w[,i-1])

}

return(w)

} 41 / 54

VFI Example
Star�ng from a log(k) scaled ini�al value

−50

−40

−30

−20

0.0 0.5 1.0 1.5 2.0

grid

va
lu

e

10

20

30

iteration

42 / 54

VFI Example
Star�ng from a random ini�al value

−50

−40

−30

−20

0.0 0.5 1.0 1.5 2.0

grid

va
lu

e

20

40

60

iteration

43 / 54

Stochas�c Dynamic Programming

• There are several ways to include uncertainty into thisframework - here is one:
• Let’s assume the existence of a variable ε, represen�ng a shock.
• Assump�ons:

1 εt affects the agent’s payoff in period t.
2 εt is exogenous: the agent cannot influence it.
3 εt depends only on εt−1 (and not on εt−2. although we couldadd εt−1 as a state variable!)4 The distribu�on of ε′|ε is �me-invariant.

• Defined in this way, we call ε a first-order Markov process.

44 / 54

The Markov Property

Defini�onA stochas�c process {xt} is said to have theMarkov property if for all
k ≥ 1 and all t,

Pr (xt+1|xt, xt−1, . . . , xt−k) = Pr (xt+1|xt) .

We assume that {εt} has this property, and characterize it by a
Markov Chain.

45 / 54

Markov Chains
Defini�onA �me-invariant n-State Markov Chain consists of:

1 n vectors of size (n, 1): ei, i = 1, . . . , n such that the i-th entry of
ei is one and all others zero,

2 one (n, n) transi�on matrix P, giving the probability of movingfrom state i to state j, and
3 a vector π0i = Pr (x0 = ei) holding the probability of being instate i at �me 0.
• e1 =

[
1 0 . . . 0

]′
, e2 =

[
0 1 . . . 0

]′
, . . . are just a way

of saying “x is in state i”.
• The elements of P are

Pij = Pr
(
xt+1 = ej|xt = ei

)
46 / 54

Assump�ons on P and π0

1 For i = 1, . . . , n, the matrix P sa�sfies
n

∑
j=1

Pij = 1

2 The vector π0 sa�sfies
n

∑
i=1

π0i = 1

• In other words, P is a stochas�c matrix, where each row sums toone:
• row i has the probabili�es to move to any possible state j. A validprobability distribu�on must sum to one.

• P defines the probabili�es of moving from current state i tofuture state j.
• π0 is a valid ini�al probability distribu�on.

47 / 54

Transi�on over two periods

• The probability to move from i to j over two periods is given by
P2

ij.• Why:
Pr
(
xt+2 = ej|xt = ei

)
=

n

∑
h=1

Pr
(
xt+2 = ej|xt+1 = eh

)
Pr (xt+1 = eh|xt+1 = ei) =

n

∑
h=1

PihPhj = P(2)
ij

• Show 3-State example to illustrate this.

48 / 54

Condi�onal Expecta�on from a Markov Chain
• What is expected value of xt+1 given xt = ei?
• Simple:

E [xt+1|xt = ei] = values of x× Prob of those values
=

n

∑
j=1

ej × Pr
(
xt+1 = ej|ei

)
=

[
x1 x2 . . . xn

]
(Pi)

′

where Pi is the i-th row of P, and (Pi)
′ is the transpose of thatrow (i.e. a column vector).

• What is the condi�onal expecta�on of a func�on f (x), i.e. whatis
E [f (xt+1)|xt = ei]?

49 / 54

Back to Stochas�c DP
• With the Markovian setup, we can rewrite (19) as

v(s, ε) = max
s′∈Γ(s,ε)

u(s, s′, ε) + βE
[
v(s′, ε′)|ε

] (24)
Theorem
If u(s, s′, ε) is real-valued, con�nuous, concave, and bounded, if
β ∈ (0, 1), and constraint set is compact and convex, then

1 there exists a unique value func�on v(s, ε) that solves (24).
2 there exists a sta�onary policy func�on φ(s, ε).

Proof.This is a direct applica�on of Blackwell’s sufficiency condi�ons:
1 with β < 1 discoun�ng holds for the operator on (24).
2 Monotonicity can be established as before.

50 / 54

Op�mality in the Stochas�c DP

• As before, we can derive the first order condi�ons on (24):
us′(s, s′, ε) + βE

[
Vs′(s′, ε′)|ε

]
= 0

• differen�a�ng (24) w.r.t. s to find Vs′(s′, ε′) we find
us′(s, s′, ε) + βE

[
us′(s′, s′′, ε′)|ε

]
= 0

51 / 54

DP Applica�on 1: The Determinis�c Growth Model
• We will now solve the determinis�c growth model with dynamicprogramming.
• Remember:

V(k) = max
c=f (k)−k′≥0

u(c) + βV(k′) (25)
• Assume f (k) = kα, u(c) = ln c.
• We will use discrete state DP.We cannot hope to know V at all

k ∈ R+. Therefore we compute V at a finite set of points, calleda grid.
• Hence, we must also choose those grid points.

52 / 54

DP Applica�on: Discre�ze state and solu�on space

• There are many ways to approach this problem:
V(k) = max

k′∈[0,kα]
ln(kα − k′) + βV(k′) (26)

• Probably the easiest goes like this:
1 Discre�ze V onto a grid of n points K ≡ {k1, k2, . . . , kn}.
2 Discre�ze control k′: change maxk′∈[0,kα] to maxk′∈K, i.e. choose

k′ from the discrete grid.
3 Guess an ini�al func�on V0(k).4 Iterate on (26) un�l d (Vt+1 −Vt) < ε, where d() is a measureof distance, and ε > 0 is a tolerance level chosen by you.

53 / 54

References

Jerome Adda and Russell W Cooper. Dynamic economics:
quan�ta�ve methods and applica�ons. MIT press, 2003.

Lars Ljungqvist and Thomas J Sargent. Recursive macroeconomic
theory. MIT press, 2012.

RE Lucas and NL Stokey. Recursive Methods in Dynamic Economics.Harvard University Press, Cambridge MA, 1989.

54 / 54

	Dynamic Programming
	Dynamic Programming: Piece of Cake
	Dynamic Programming Theory
	Stochastic Dynamic Programming

