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Estimation of Dynamic Programming Models

® Now that we know how to solve them, how do we estimate DP
models?

® Examples

® Rust (1987)
® Berry et al. (1995)

® There are many different methods. We will introduce just a few.
Look at the survey Aguirregabiria and Mira (2010) for more
details.
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Rust (1987)

® Each Bus comes in once a month for repair

® Harold Zurcher decides after observing mileage x; since last
engine replacment and some other unobserved variable ¢
whether to replace or not:

—c(xt, gc) Ifdt =0

t d;, 09, RC) =
u(x +tdy ) {—(RC—i—c(O,GC) ifd =1

® He solves the DP

Vy(xt) = supE {iﬂitu(xj d;, 0) + €t(dt)|xt}

dy j=t

® Parameters to be estimated: 6 = (6°, RC, 67)

® This formulation results after making a set of simplifying
assumptions.
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Rust (1987)

To simplify, the odometer progress is assumed to be a random
process.

that is, x; evolves stochastically.

® The assumption is that x;11 € {s,s + 1,5+ 2,5+ 3} where s is
the state of x4, i.e. the bin it lies in.

Move from one bin to the next with probabilities in 67.
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Model and Data

e Data: a time series {x;, dt}thl
® likelihood function is
L(0) = T1_,P(ds|x;, 0, RC) 7t (¢ |21, dy 1, 67)
where the conditional choice probabilities are given by

explu(x,d,6°, RC) 4+ BEV(x,d)]
Yaeqonyexplu(x,d’, 09 RC) + BEV,y (', d')]

P(dt|xt, QC, RC) =

and, importantly, EV is the solution to

EV@ (x, d) :TG(EVQ) (x, d)

E/ log ( Y explu(x,d’, 6, RC) +,BEV9(x’,d/)]>
¥'=0 d'€0,1
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Nested Fixed Point Algorithm (NXFP)

@ Outer Loop: Solve the Likelihood function

rgla(;(E( ) = I, P(d|xt, 0, RC) 7t (x| x¢—1, dg—1, 07
>

® Inner Loop: Compute Expected value function EV for a given
guess 0
EVQ = Tg(EV@)(x, d)
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Potential Issues with NXFP

® \We need a stopping rule for the likelihood function.
® We need one for the inner loop as well.

® Errors will propagate from the inner loop to the outer loop.

Given that the search direction on £(6) depends on it’s
gradient, errors will matter a lot.

the tolerance on the inner loop needs to be tight, like 1.0e~13
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MPEC

Mathematical Programming with Equality constraints

® We can turn the problem around.

® |nstead of asking Whats the EV compatible with my guess 6?, we
could directly attack the likelihood:

® Maximize £(0) subject to the constraint, that behavior is
optimal according to the model.

® in other words, augment the likelihood:

L(6,EV; X) = TI]_,P(dy|xs, 6°, RC) 7t (xs|xt 1, ds 1, 67)
explu(x,d,0,RC) + BEV (x,d)]
Yaeqonyexplu(x,d’, 09, RC) + BEV (¥, d")]

P(dt|xt, QC, RC) =
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Different Optimization problems

NXFP solves the unconstrained optimization problem:

mgaxﬁ(@,EVe)

MPEC solves the constrained optimization problem:
max/L(60,EV; X)
0,EV

subject toEV = T(EV, 0)
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Su and Judd (2012)

® Su and Judd (2012) perform MPEC on the bus model.

® the key difference to note is that EV now becomes a choice
variable.

® |n fact, the optimizer will be fed a vector
x = [RC, 6% EV]

where EV is an approximation to EV. In Su and Judd (2012), this
is just going to be

EV = [EV(x1),EV(x2),...,EV(x4)]

i.e. the approximation needs to hold pointwise.
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Su and Judd (2012)

TABLE II

NUMERICAL PERFORMANCE OF NFXP AND MPEC IN THE MONTE CARLO EXPERIMENTS?

Runs Converged CPUTime # of Major # of Func.  # of Contraction
B Implementation (out of 1250 runs) (in sec.) Iter. Eval. Mapping Iter.
0.975 MPEC/AMPL 1240 0.13 12.8 17.6 -
MPEC/MATLAB 1247 7.90 53.0 62.0 -
NFXP 998 24.60 55.9 189.4 134,748
0.980 MPEC/AMPL 1236 0.15 14.5 21.8 -
MPEC/MATLAB 1241 8.10 57.4 70.6 -
NEXP 1000 27.90 55.0 183.8 162,505
0.985 MPEC/AMPL 1235 0.13 13.2 19.7 -
MPEC/MATLAB 1250 7.50 55.0 62.3 -
NEXP 952 43.20 61.7 227.3 265,827
0.990 MPEC/AMPL 1161 0.19 18.3 42.2 -
MPEC/MATLAB 1248 7.50 56.5 65.8 -
NEXP 935 70.10 66.9 253.8 452,347
0.995 MPEC/AMPL 965 0.14 13.4 21.3 -
MPEC/MATLAB 1246 7.90 59.6 70.7 -
NEXP 950 111.60 58.8 214.7 748,487

aFor each B, we use five starting points for each of the 250 replications. CPU time, number of major iterations,
number of function evaluations and number of contraction mapping iterations are the averages for each run.
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Performance

In general, NXFP is a computationally expensive operation.

® you have to solve a DP for many many many times in order to
find your 6.

However, there is much to qualify about this statement. The
details matter here.

For example, Su and Judd (2012) are very critical about NXFP in
the Bus Model. They compare it to the performance of MPEC.

But Iskhakov et al. (2016) redo the exercise with Rust’s original
method to solve EV and show that NXFP is still a very strong
contender in this example.
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Berry, Levinsohn and Pakes (BLP) as MPEC
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BLP after Dubé et al. (2012)

® Berry et al. (1995) is a model for automobile sales.

® |t has become a very widely applied model and estimation
technique, short: BLP.

® The original paper performs demand estimation with a large
number of differentiated products:

characteristics approach

useful when only aggregate data are available
allows for flexible substitition patterns
controls for price endogeneity

® The computational algorithm derives moment conditions from a
non-linear model

® The method is also known as Random Coefficients Logit
Demand
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Random Coefficients Logit Demand

® The Utility of i from purchasing product j in market ¢ is
wiie = B+ X1t — Bipji + Gjt + i (1)

® with product characteristics xjt, pjt, jt

® Xxjt, pjs: ovserved with cov(pj;, Gjt) # 0
® (ji: unovserved to econometrician.

° Bi=] ?, i’ ﬁf]z random coefficients or individual specific
tastes to be estimated.
® We posit a distribution: ; ~ Fg(B,0)

® | Goal of BLP |: estimate 0 in the above parametric distribution.
® errors are assumed type 1EV
Consumer picks product j if u;j > 1
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The Model: Market Shares

® The model predicts :

sj(xt, pr, Xi; 0) = dFg(B,0)dF:(e) (2)

[{.Bifgi |uijf2uij’t’vj, #i}

® with type 1EV shocks ¢, there is an analytical solution to one of
those integrals:

exp (B’ + X" — Brpjt + &)
1+ Zizl exp (B0 + x ¥ — BPpie + Cie)

si(xt, pr, Xip; 0) = //3 dFg(p, 0

(3)
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The Model: Market Shares

They use numerical integration:

i (B — Pt )
~ ns Z

dF'B(‘B,(
=11+ Zk 1exXp(BY + x B — BV pre + ‘:kt() )
4

§j(xt, Pt Xit; 0

to arrive at the market share (moment) conditions:
Si(x,p, Cis0) = Sp,Vj€J,t €T (5)

where Sj; is data.
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GMM Estimator

® |f firms can observe demand shocks ¢;, they will set prices
accordingly.

® There will be correlation between p; and ¢; = Endogeneity Bias!

® BLP solve endogeneity of prices with a vector zj; of IVs, which
are excluded from the demand equation (1)

® they propose a moment condition E[C;¢|zjt, xj;| = 0

® zj:eg. product-specific cost shifters, or K non-price
characteristics in Xjt (assumed mean independent of ¢;)

® We often form E[Cj; - h(zjt, xjt)] = 0 for some known function /.
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Getting moment equations

® To get the sample analog of E[Gj;|zjt, xj;] = 0, we need to find
Gji corresponding to ¢

® System (5) defines a mapping ¢;; and S;

® Berry proved that s has an inverse, hence any observed S; can
be explained by a unique j;(6) = s~1(S;,0)

® Sample analog of E[Cj;|zjt, xj:| = O'is thus

5(6) = ;];@t(e)'zﬁ
/]
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GMM Estimator

® Dataare {(Xji, Pjt, Sits Zjt)je) teT }

® We want to minimize the GMM objective

Q(0) = g(6)'Wg(0)

® There is no analytic form for ¢ (0), see previous slide
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Berry et al. (1995) Estimation Algorithm - NFXP

e Outer Loop: miny (6)' Wg(6)

@ Guess vector 6 to get ¢(6) = Tl] Y Y e (0)'zjt
@ Stop whenever || Vy(g(0)Wg(0))|| < eout
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Berry et al. (1995) Estimation Algorithm - NFXP

e Outer Loop: miny (6)' Wg(6)

© Guess vector 6 to get ¢(6)

= T Y Y e (0)'zjt
@ Stop whenever || Vy(g(6)'W. (

DI < €out
® Inner loop: compute ¢j;(6) given 0
@ Solve system s]-(xt,pt,xit; 0) = S.; by Berry constraction:
¢t =gl +1og S — logs;(xy, pr, 1 6)

@ Stop whenever ||¢'F1 — @ < ¢,
© Call resulting demand shock &t (0, €in)

® Clearly, need to choose both stopping rules for inner and outer
loop.
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Knittel and Metaxoglou (2014)

® They perform an extensive investigation into BLP on two widely
used datasets: cars and cereals.

® They use 10 free solvers and 50 starting points for each.

® Find: convergence occurs at several local extrema, saddles, and
in regions where the FOC is not satisfied.

® Resulting parameter estimates of economic variables (market
shares, price elasticiteis) exhibit huge variation depending on
solver/starting point.

e Allin all, they found 400 local solutions.
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Dubé et al. (2012)’s concerns

@ Too much computation

® need to know &(6) only at true 6.
® NFXP solves for () at each stage.

® Stopping criteria

® inner loop can be slow to converge
® it's tempting to loosen €;, (often see €;,, = 1e~° or higher!)
® outer loop may not converge with loose inner criterion

® Inner loop error propagates to outer loop.
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Errors from loose stopping

0* =arg max Q(&(6,0))
0= arg max Q(&(8,€n))

® Dubé et al. (2012) derive bounds on the order of estimatin error
as a function of ¢,

® Consider Knittel and Metaxoglou (2014) for numerical
experiments.
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BLP as an MPEC

® Dubé et al. (2012) cast this as an MPEC:
r{}ignCTZWZTEj
subjecttos(¢,0) =S

® Advantages:

@ No need to set up 2 tolerances

® no inner errors propagated

©® easy to code in AMPL

@® fewer iterations, given that AMPL provides analytic
gradients/hessian
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Exploring Sparsity in BLP

® The way this is formulated now, the Hessian of objective is
dense. :-(

® They add an additional variable » and associated constraint
Zle=r

minr! Wr
0,C,r

subjecttos(¢,0) =S
and ZT¢ =

® advantages:

@ Hessian of objective function is now sparse
@ Very big saving in memory requirements.
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Convergence and Loose vs Tight

TABLE II

THREE NFP IMPLEMENTATIONS: VARYING STARTING VALUES FOR NEVO’S CEREAL DATA SET,
WITH CLOSED-FORM DERIVATIVES®

NFP NFP NFP NFP Tight
Loose Inner  Loose Both  Tight Both Simplex

Fraction reported convergence 0.0 0.76 1.00 1.00
Frac. obj. fun. < 1% greater than “global” min. 0.0 0.0 1.00 0.0
Mean own-price elasticity across all runs -3.82 -3.69 —7.43 —3.84
Std. dev. own price elasticity across all runs 0.4 0.07 ~0 0.35
Lowest objective function value 0.00213 0.00683  0.00202  0.00683
Elasticity for run with lowest obj. value —6.71 -3.78 —7.43 -3.76

aWe use the same 50 starting values for each implementation. The NFP loose inner-loop implementation has
€p = 10~4 and eoyt = 10~6. The NFP loose-both implementation has €, = 10~ and egyt = 10~2. The NFP-tight
implementation has €j, = 1014 and eyt = 10~5. The Nelder-Meade or simplex method uses a tighter inner-loop
tolerance of €j; = 10~ 14 and MATLAB’s default values for the simplex convergence criteria. We manually code closed-
form derivatives for all methods other than for Nelder-Meade, which does not use derivative information.
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Speed
TABLE III
MONTE CARLO RESULTS VARYING THE LIPSCHITZ CONSTANT?

Elasticities

Intercept Lipsch. Runs CPU Time Outside
E[B?] Const. Imple. Converged (min) Bias RMSE Truth Share
-2 0.891  NFP-tight 100% 21.7 —-0.077 0.14 -10.4 0.91
MPEC 100% 18.3 —0.076 0.14
-1 0.928  NFP-tight 100% 28.3 —0.078 015 -10.5 0.86
MPEC 100% 16.3 -0.077 0.15
0 0.955 NFP-tight 100% 41.7 —0.079 0.16 —10.6 0.79
MPEC 100% 15.2 —-0.079 0.16
1 0.974  NFP-tight 100% 71.7 —0.083 0.16  —10.7 0.69
MPEC 100% 11.8 —0.083 0.16
2 0.986  NFP-tight 100% 103 —0.085 017 -10.8 0.58
MPEC 100% 13.5 —0.085 0.17
3 0.993 NFP-tight 100% 167 —0.088 0.17 —11.0 0.46
MPEC 100% 10.7 —0.088 0.17
4 0.997  NFP-tight 100% 300 —-0.091 016 -11.0 0.35
MPEC 100% 12.7 —0.090 0.16

AThere are 20 replications for each experiment and reported means are across these 20 replications. Each repli-
cation uses five starting values to do a better job at finding a global minimum. For each NFP starting value, we run
the inner-loop once and use this vector of demand shocks and mean taste parameters as starting values for MPEC.
The NFP-tight implementation has €;, = 10~14 and €out = 106, There is no inner-loop in MPEC; €gyt = 10 and
€feasible = 10~°. The same 1000 simulation draws are used to generate the data and to estimate the model. NFP and
MPEC use closed-form first- and second-order derivatives. We supply the sparsity patterns of the constraints and
derivatives to the optimization routine for both methods.
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