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Two-Sided Matching

How does matching differ from standard markets?

1 There is no price signal (no walrasian auctioneer)

2 Preferences are over agents not over goods.

3 There are indivisibilities. (Cannot match 30% with person A and
70% with person B. in general.)
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Two-Sided Matching: Applications

• Online Dating

• Market design: doctor assignment to hospitals

• Kidney Exchange (google Al Roth Kidney Exchange)

• School Choice: Boston, New York (soon? SciencesPo)

• Gale and Shapley (1962)

• pose problem
• provide algorithm
• show existence
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One-to-One Matching: A Marriage Market

• Take two disjoint sets W = {w1, . . . , wp} and
M = {m1, . . . , mn}

• We want to match in pairs (wi, mj) and allow for singles.

• Agents have preferences over members of other sex.

• This is just an ordered list:

P(m) = w1, w3, [m, wp], . . . , w2

and similar for women.
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One-to-One Matching

• We denote

P = {P(m1), . . . , P(mn), P(w1), . . . , P(wp)}

as the preference profile.

• Themarriage market is defined by (W, M, P)

A particular men-to-women allocation is called a matching µ:

Definition: Marriage Matching

A marriage matching µ is a one to one correspondence from
W ∪ M onto itself, i.e. µ(µ(x)) = x, such that if µ(m) ̸= m
then µ(m) ∈ W and if µ(w) ̸= w then µ(w) ∈ M.
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One-to-One Matching: Blocking µ

• a matching µ is blocked by individual k if k prefers being single
to being matched with µ(k)

• We write k ≻k µ(k).

• A matching µ is individually rational if each agent in µ is
acceptable, i.e. µ is not blocked by any agent.

• A matching µ is blocked by a pair of agents (m, w) if

w ≻m µ(m) and m ≻w µ(w)
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One-to-One Matching: Stable Matching

Definition: Stable Matching

A marriage matching µ is stable if it is not blocked by any indi-
vidual or any pair of agents.

Theorem: Gale and Shapley (1962)

A stable matching exists for every marriage market.
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One-to-One Matching: Proof

• Their proof uses the Deferred Acceptance Algorithm (DAA).

• Start with one side of the market (men, say):

Iter 1
i. Each man proposes to his first choice (if any acceptable ones)
ii. Each women holds their most preferred proposer

Iter K ...
Iter K+L STOP if no further proposals are made and match any woman to

the man whose proposal she is currently holding.

• Break ties arbitrarily

• With finite set of men and women, this algo is finite and always
stops.
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One-to-One Matching: Proof

• Gives rise to a stable matching.

• Suppose not. Suppose m can do better, i.e. m prefers w to
current match µ(m):

1 w ≻m µ(m)
2 m must have proposed to w before proposing to µ(m)
3 m must have been rejected by w
4 that means that µ(w) ≻w m
5 Not a blocking pair.
6 Match is stable.
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DAA Example

• Example: Consider market (W, M, P) where

P(m1) = w1, w2, w3, w4 P(w1) = m2, m3, m1, m4, m5

P(m2) = w4, w2, w3, w1 P(w2) = m3, m1, m2, m4, m5

P(m3) = w4, w3, w1, w2 P(w3) = m5, m4, m1, m2, m3

P(m4) = w1, w4, w3, w2 P(w4) = m1, m4, m5, m2, m3

P(m5) = w1, w2, w4, m5

• The DAA proceeds as follows:

Iterate w1 w2 w3 w4 (mi)

1. m1, m4, m5 m2, m3
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DAA Example
• Example: Consider market (W, M, P) where

P(m1) = w1, w2, w3, w4 P(w1) = m2, m3, m1, m4, m5
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• The DAA proceeds as follows:

Iterate w1 w2 w3 w4 (mi)
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DAA Example - M stable matching

• Example: Consider market (W, M, P) where

P(m1) = w1, w2, w3, w4 P(w1) = m2, m3, m1, m4, m5

P(m2) = w4, w2, w3, w1 P(w2) = m3, m1, m2, m4, m5

P(m3) = w4, w3, w1, w2 P(w3) = m5, m4, m1, m2, m3

P(m4) = w1, w4, w3, w2 P(w4) = m1, m4, m5, m2, m3

P(m5) = w1, w2, w4, m5

• Hence, the M-stable matching is:

µM =
w1 w2 w3 w4 (m5)

m1 m2 m3 m4 (m5)
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DAA Example - W stable matching

• Notice that if women were to make proposals, we’d get

• Hence, the stable matching is:

µW =
w1 w2 w3 w4 (m5)

m2 m3 m4 m1 (m5)

• Implications:

1 In general, the set of stable matchings is not a singleton.
2 All m weakly prefer µM, opposite for women.
3 I.e. there is a conflict between both sides of the market as to

who is to make the offer!
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One-to-one Matching Gale and Shapley

Theorem (Gale and Shapley)

When all men and women have strict preferences, there al-
ways exists an M-optimal stable matching, and a W-optimal
stable matching. Furthermore, the matching µM produced by
the DAAwithmen proposing is theM-optimal stablematching.
The W-optimal stable matching is the matching µW produced
by the DAA when women propose.
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DDA in practice

look at the example!
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Two-sided Matching with Transferrable Utility

• Less attractive agents may compensate more attractive ones to
form a match

• in the labor market: Wage.

• cleaning for roommates, child care in marriage

• We will now focus on assortative matching
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Assortative Matching

Environment:
• A fixed measure of workers indexed by x ∈ X (uniform)

• A fixed measure of jobs indexed by y ∈ Y (uniform)

• A production function f (x, y)

• Common ranking fx > 0, fy > 0

• The cross partial derivatives of f have a key function for
monotone matching.

• Example 1: f+(x, y) = αxθyθ

• Example 2: f−(x, y) = αxθ(1 − y)θ + g(y)

• We allow matched agents to transfer each other w (the wage).
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Assortative Matching

Preferences:
• Workers care about the wage

• Firm care about profits: π(y) = f (x, y)− w

Allocation is defined by a matching rule (µ, w):
• µ(x) = y: Which worker matches to which firm. Pure matching.

• w(x): a wage schedule.
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Assortative Matching: equlibrium

Stable Matching Rule:
• No pair (x, y) can do better than in equlibrium:

∀x, y : w(x)︸︷︷︸
x eqm payoff

+π(µ−1(y), y)︸ ︷︷ ︸
y eqm payoff

≥ f (x, y)︸ ︷︷ ︸
potential output

Results:
• Existence: Yes. Shapley and Shubik 1971

• Eficiency: Yes. Maximizes joint utility

• Unique: Matching is generically unique, transfers are not

• Stable Matching and Competitive Eqm coincide (Gretsky, Ostroy
and Zame 1999)
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Competitive Eqm and Assortative Matching

• Firm’s problem:

• Take the wage schedule given and choose x to max profit:

max
x

f (x, y)− w(x)

• FOC: fx(x, y)− wx(x) = 0

• What is eqm allocation?

• follows from SOC: fxx(x, y)− wxx(x)︸ ︷︷ ︸
?

< 0

25 / 40



Competitive Eqm and Assortative Matching
• What’s the sign of wxx(x)? Take derive of FOC at the Eqm

condition µ(x) = y:

d
dx

(fx(x, µ(x))− wx(x)) = 0

fxx(x, µ(x)) + fxy(x, µ(x))
dµ(x)

dx
− wxx(x) = 0

• so, the SOC is satisfied provided:

fxx(x, y)− wxx(x) < 0 ⇐⇒

fxy(x, µ(x))
dµ(x)

dx
> 0

• Notice that fxy(x, µ(x)) dµ(x)
dx measures the assortative

matching relationship
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Production Function and Assortative Matching
• We have:

1 + Assortative Matching (PAM): fxy(x, µ(x)) > 0 if dµ(x)
dx > 0

2 − Assortative Matching (NAM): fxy(x, µ(x)) < 0 if dµ(x)
dx < 0

• fxy describes the supermodularity of f .

• A function f : Rk → R is supermodular if

f (x ↑ y) + f (x ↓ y) ≥ f (x) + f (y)

where ↑, ↓ denote element-wise max, min respectively.

• If f is twice differentiable, the condition is equivalent to

∂2f
∂zi∂zj

≥ 0, ∀i ̸= j.
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Production Function and Assortative Matching
• We have:

1 + Assortative Matching (PAM): fxy(x, µ(x)) > 0 if dµ(x)
dx > 0

2 − Assortative Matching (NAM): fxy(x, µ(x)) < 0 if dµ(x)
dx < 0

• fxy describes the supermodularity of f .

• if f is super-modular, better workers in better firms is more
efficient

• Gives a clear rationale for why better workers should
assortatively match with firms.

• Supermodularity is about the rate of change in the change: Do
better workers gainmore from moving to better firms.

• Note: With pure matching (like here), we cannot differentiate
worker from firm effects.
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Matching with Frictions: Environment

• A fixed measure of workers indexed by x ∈ X (uniform)

• A fixed measure of jobs indexed by y ∈ Y (uniform)

• A production function f (x, y)

• Common ranking fx > 0, fy > 0

• We allow matched agents to transfer each other w (the wage).

• unemployed get b(x); vacancies cost c(y)

• workers and firms care about EPV (forward looking)
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Matching with Frictions: Allocations

• u(x) is the mass of unemployed workers, v(x) is the mass of
vacancies

• h(x, y) is the mass of matches (like µ, but not pure anymore!)

• w(x, y) is the wage and M(x, y) the matching decision (yes/no)
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Matching Process

• Meeting technology is imperfect:

• unemployed find offers at rate λ
• vacancies find workers at rate µ
• λ and µ can be endogenized with a matching function:

• the number of matches is N = m(U, V)
• then λ = N

U , µ = N
V

• a classic matching function is m(u, v) = αu0.5v0.5

• matching is random: workers draw from v(y), firms draw from
u(x)
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Matching Process: Timing

1 production: matches produce output and pay wage

2 meeting: U and V meet

3 matching: newly matched pairs decide wether to start
partnership

4 separation: existing matches destroyed at rate δ
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Match Surplus - Present Values

• W1(x, y, w) and W0(x) are EPV of employed and unemployed

• Π1(x, y, w) and Π0(y) are EPV of job and vacancy

• Surplus is defined as

S(x, y) := W1(x, y, w) + Π1(x, y, w)− W0(x)− Π0(y)

• Worker EPV: rW1(x, y, w) = w + δ(W0(x)− W1(x, y, w))

• Job EPV: rΠ1(x, y, w) = f (x, y)− w + δ(Π0(y)− Π1(x, y, w))
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Value of Match Surplus

Some simple algebra gives us that:

(r + δ)S(x, y) = f (x, y)− rW0(x)− rΠ0(y)

• Note that we don’t need to know the wage to compute this!

• Under TU, the matching decision is M(x, y) = 1[S(x, y) ≥ 0]

• Surplus can be non-monotonic because of option value!

• Surplus inherits complementarity directly from f .
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Wages and Division of Surplus

• There an infinite number of ways to split the surplus

• S-S assume: nash bargaining with α the worker’s bargaining
power.

• then the optimal wage w(x, y) solves

(1 − α) (W1(x, y, w)− W0(y)) = α (Π1(x, y, w)− Π0(y))

• Therefore, upon meeting

• worker gets W0(x) + α(S(x, y)
• firm gets Π0(x) + (1 − α)(S(x, y)
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EPV of unemployed and vacancy

• EPV of the unemployed:

rW0(x) = (1 + r)b(x) + λ
∫

αM(x, y)S(x, y)
v(y)

V
dy

• EPV of a vacancy:

rΠ0(x) = −(1 + r)c(y) + µ
∫
(1 − α)M(x, y)S(x, y)

u(x)
U

dx

• Matching Distribution

δh(c, y) =
λ

V
M(x, y)u(x)v(y)
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Equlibrium

Given the primitives f (x, y), c(y), b(x), r, δ, α, λ, µ, a stationary
search equilibrium is defined by
• EPVs: S(x, y), Π0, W0, Π1, Π0

• Allocations: h(x, y), u(x), v(y)

• wage w(x, y) and matching functions M(x, y)
such that

1 the EPVs solve the Bellman Equations

2 the wage is the Nash barginaing solution

3 the distributions satisfy stationarity and adding up propoerties.
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Results

• Existence: Yes Shimer and Smith (2000)

• Uniqueness: NO

• Efficiency: Not in general

• workers do not internalize how the affect others’ search (search
externality)

• romm for efficiency improving policies

• Assortative Matching

• Shimer and Smith (2000) introduce new definitions:
monotonicity of matching set boundaries.

• log supermodular f (x, y) → PAM
• log submodular f (x, y) → NAM
• this requires stronger complementarities than in frictionless

world.
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