Graduate Labor Economics

Sorting in the Labor Market (in Theory)

Florian Oswald, SciencesPo Paris

April 22, 2024

<ロト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<1/40</p>

Table of contents

Frictionless Matching

Introduction Non-Transferrable Utility Transferrable Utility and Assortative Matching

Matching With Frictions

A simple Shimer and Smith Model

How does matching differ from standard markets?

- 1 There is no price signal (no walrasian auctioneer)
- **2** Preferences are over agents not over goods.
- 3 There are indivisibilities. (Cannot match 30% with person A and 70% with person B. in general.)

Two-Sided Matching: Applications

- Online Dating
- Market design: doctor assignment to hospitals
- Kidney Exchange (google Al Roth Kidney Exchange)
- School Choice: Boston, New York (soon? SciencesPo)
- Gale and Shapley (1962)
 - pose problem
 - provide algorithm
 - show existence

Frictionless Matching

Introduction

Non-Transferrable Utility

Transferrable Utility and Assortative Matching

Matching With Frictions

A simple Shimer and Smith Model

One-to-One Matching: A Marriage Market

- Take two disjoint sets $W = \{w_1, \dots, w_p\}$ and $M = \{m_1, \dots, m_n\}$
- We want to match in pairs (w_i, m_i) and allow for singles.
- Agents have preferences over members of other sex.
- This is just an ordered list:

$$P(m) = w_1, w_3, [m, w_p], \ldots, w_2$$

and similar for women.

One-to-One Matching

We denote

$$\mathbf{P} = \{P(m_1), \dots, P(m_n), P(w_1), \dots, P(w_p)\}$$

as the preference profile.

• The marriage market is defined by (*W*, *M*, **P**)

A particular men-to-women allocation is called a matching μ :

Definition: Marriage Matching

A marriage matching μ is a one to one correspondence from $W \cup M$ onto itself, i.e. $\mu(\mu(x)) = x$, such that if $\mu(m) \neq m$ then $\mu(m) \in W$ and if $\mu(w) \neq w$ then $\mu(w) \in M$.

One-to-One Matching: Blocking μ

- a matching µ is blocked by individual k if k prefers being single to being matched with µ(k)
- We write $k \succ_k \mu(k)$.
- A matching μ is individually rational if each agent in μ is acceptable, i.e. μ is not blocked by any agent.
- A matching μ is blocked by a **pair of agents** (m, w) if

$$w \succ_m \mu(m)$$
 and $m \succ_w \mu(w)$

One-to-One Matching: Stable Matching

Definition: Stable Matching

A marriage matching μ is **stable** if it is not blocked by any individual or any pair of agents.

Theorem: Gale and Shapley (1962)

A stable matching exists for every marriage market.

One-to-One Matching: Proof

- Their proof uses the Deferred Acceptance Algorithm (DAA).
- Start with one side of the market (men, say):

Iter 1

- i. Each man proposes to his first choice (if any acceptable ones)
- ii. Each women holds their most preferred proposer

Iter K ...

- Iter K+L STOP if no further proposals are made and match any woman to the man whose proposal she is currently holding.
 - Break ties arbitrarily
 - With finite set of men and women, this algo is finite and always stops.

One-to-One Matching: Proof

- Gives rise to a stable matching.
- Suppose not. Suppose *m* can do better, i.e. *m* prefers *w* to current match $\mu(m)$:
 - w ≻_m µ(m)
 m must have proposed to w before proposing to µ(m)
 m must have been rejected by w
 that means that µ(w) ≻_w m
 Not a blocking pair.
 Match is stable.

• Example: Consider market (*W*, *M*, **P**) where

$$P(m_1) = w_1, w_2, w_3, w_4 \quad P(w_1) = m_2, m_3, m_1, m_4, m_5$$

$$P(m_2) = w_4, w_2, w_3, w_1 \quad P(w_2) = m_3, m_1, m_2, m_4, m_5$$

$$P(m_3) = w_4, w_3, w_1, w_2 \quad P(w_3) = m_5, m_4, m_1, m_2, m_3$$

$$P(m_4) = w_1, w_4, w_3, w_2 \quad P(w_4) = m_1, m_4, m_5, m_2, m_3$$

$$P(m_5) = w_1, w_2, w_4, m_5$$

• The DAA proceeds as follows:

Iterat	te	w_1	<i>w</i> ₂	w_3	w_4	(m_i)	
1.	1. m_1, m_4, m_5		m_2, m_3				

• Example: Consider market (*W*, *M*, **P**) where

$$P(m_1) = w_1, w_2, w_3, w_4 \quad P(w_1) = m_2, m_3, m_1, m_4, m_5$$

$$P(m_2) = w_4, w_2, w_3, w_1 \quad P(w_2) = m_3, m_1, m_2, m_4, m_5$$

$$P(m_3) = w_4, w_3, w_1, w_2 \quad P(w_3) = m_5, m_4, m_1, m_2, m_3$$

$$P(m_4) = w_1, w_4, w_3, w_2 \quad P(w_4) = m_1, m_4, m_5, m_2, m_3$$

$$P(m_5) = w_1, w_2, w_4, m_5$$

• The DAA proceeds as follows:

Itera	te w	<i>w</i> ₂	<i>w</i> ₃	w_4	(m_i)
1.	m_1, m_4, m_5	5		m_2, m_3	
2.	$m_{\rm c}$	<i>m</i> ₅	m_3	m_4, m_2	

• Example: Consider market (*W*, *M*, **P**) where

$$P(m_1) = w_1, w_2, w_3, w_4 \quad P(w_1) = m_2, m_3, m_1, m_4, m_5$$

$$P(m_2) = w_4, w_2, w_3, w_1 \quad P(w_2) = m_3, m_1, m_2, m_4, m_5$$

$$P(m_3) = w_4, w_3, w_1, w_2 \quad P(w_3) = m_5, m_4, m_1, m_2, m_3$$

$$P(m_4) = w_1, w_4, w_3, w_2 \quad P(w_4) = m_1, m_4, m_5, m_2, m_3$$

$$P(m_5) = w_1, w_2, w_4, m_5$$

The DAA proceeds as follows:

Iterat	te w_1	w_2	w_3	w_4	(m_i)
1.	m_1, m_4, m_5			m_2, m_3	
2.	m_1	m_5	m_3	m_4, m_2	
3.	m_1	m_2, m_5	m_3	m_4	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

• Example: Consider market (*W*, *M*, **P**) where

$$P(m_1) = w_1, w_2, w_3, w_4 \quad P(w_1) = m_2, m_3, m_1, m_4, m_5$$

$$P(m_2) = w_4, w_2, w_3, w_1 \quad P(w_2) = m_3, m_1, m_2, m_4, m_5$$

$$P(m_3) = w_4, w_3, w_1, w_2 \quad P(w_3) = m_5, m_4, m_1, m_2, m_3$$

$$P(m_4) = w_1, w_4, w_3, w_2 \quad P(w_4) = m_1, m_4, m_5, m_2, m_3$$

$$P(m_5) = w_1, w_2, w_4, m_5$$

• The DAA proceeds as follows:

Iterate	w_1	w_2	w_3	w_4	(m_i)
1. <i>m</i> ₁ ,	m_4, m_5			m_2, m_3	
2.	m_1	m_5	m_3	m_4, m_2	
3.	m_1	m_2, m_5	m_3	m_4	
4.	m_1	m_2	m_3	m_4	m_5
					(E) (E) E

15/40

DAA Example - M stable matching

• Example: Consider market (*W*, *M*, **P**) where

$$P(m_1) = w_1, w_2, w_3, w_4 \quad P(w_1) = m_2, m_3, m_1, m_4, m_5$$

$$P(m_2) = w_4, w_2, w_3, w_1 \quad P(w_2) = m_3, m_1, m_2, m_4, m_5$$

$$P(m_3) = w_4, w_3, w_1, w_2 \quad P(w_3) = m_5, m_4, m_1, m_2, m_3$$

$$P(m_4) = w_1, w_4, w_3, w_2 \quad P(w_4) = m_1, m_4, m_5, m_2, m_3$$

$$P(m_5) = w_1, w_2, w_4, m_5$$

• Hence, the *M*-stable matching is:

$$\mu_M = \begin{array}{ccccc} w_1 & w_2 & w_3 & w_4 & (m_5) \\ m_1 & m_2 & m_3 & m_4 & (m_5) \end{array}$$

<ロト</th>
 < 目 > < 目 > < 目 > < 目 > < 目 > < 目 / 2000</th>

 16/40

DAA Example - W stable matching

- Notice that if women were to make proposals, we'd get
- Hence, the stable matching is:

$$\mu_{\rm W} = \begin{array}{cccc} w_1 & w_2 & w_3 & w_4 & (m_5) \\ m_2 & m_3 & m_4 & m_1 & (m_5) \end{array}$$

- Implications:
 - 1 In general, the set of stable matchings is not a singleton.
 - **2** All *m* weakly prefer μ_M , opposite for women.
 - 3 I.e. there is a conflict between both sides of the market as to who is to make the offer!

One-to-one Matching Gale and Shapley

Theorem (Gale and Shapley)

When all men and women have strict preferences, there always exists an *M*-optimal stable matching, and a *W*-optimal stable matching. Furthermore, the matching μ_M produced by the DAA with men proposing is the *M*-optimal stable matching. The *W*-optimal stable matching is the matching μ_W produced by the DAA when women propose.

DDA in practice

look at the example!

Frictionless Matching

Introduction Non-Transferrable Utility Transferrable Utility and Assortative Matching

ヘロン 人間 とくほ とくほ とう

20/40

Matching With Frictions

A simple Shimer and Smith Model

Two-sided Matching with Transferrable Utility

- Less attractive agents may compensate more attractive ones to form a match
- in the labor market: Wage.
- cleaning for roommates, child care in marriage
- We will now focus on assortative matching

Assortative Matching

Environment:

- A fixed measure of workers indexed by $x \in X$ (uniform)
- A fixed measure of jobs indexed by $y \in \mathbb{Y}$ (uniform)
- A production function f(x, y)
- Common ranking $f_x > 0, f_y > 0$
- The cross partial derivatives of *f* have a key function for monotone matching.

• Example 1:
$$f^+(x, y) = \alpha x^{\theta} y^{\theta}$$

- Example 2: $f^{-}(x, y) = \alpha x^{\theta} (1 y)^{\theta} + g(y)$
- We allow matched agents to transfer each other w (the wage).

Assortative Matching

Preferences:

- Workers care about the wage
- Firm care about profits: $\pi(y) = f(x, y) w$

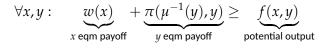
Allocation is defined by a matching rule (μ, w) :

- $\mu(x) = y$: Which worker matches to which firm. Pure matching.
- w(x): a wage schedule.

Assortative Matching: equlibrium

Stable Matching Rule:

• No pair (*x*, *y*) can do better than in equilbrium:



Results:

- Existence: Yes. Shapley and Shubik 1971
- Eficiency: Yes. Maximizes joint utility
- Unique: Matching is generically unique, transfers are not
- Stable Matching and Competitive Eqm coincide (Gretsky, Ostroy and Zame 1999)

Competitive Eqm and Assortative Matching

- Firm's problem:
 - Take the wage schedule given and choose *x* to max profit:

$$\max_{x} f(x, y) - w(x)$$

• FOC:
$$f_x(x, y) - w_x(x) = 0$$

• What is eqm allocation?

• follows from SOC:
$$f_{xx}(x,y) - \underbrace{w_{xx}(x)}_? < 0$$

イロト イポト イヨト イヨト 二日

Competitive Eqm and Assortative Matching

• What's the sign of $w_{xx}(x)$? Take derive of FOC at the Eqm condition $\mu(x) = y$:

$$\frac{d}{dx}\left(f_x(x,\mu(x)) - w_x(x)\right) = 0$$
$$f_{xx}(x,\mu(x)) + f_{xy}(x,\mu(x))\frac{d\mu(x)}{dx} - w_{xx}(x) = 0$$

• so, the SOC is satisfied provided:

$$f_{xx}(x,y) - w_{xx}(x) < 0 \iff$$

$$f_{xy}(x,\mu(x))\frac{d\mu(x)}{dx} > 0$$

• Notice that $f_{xy}(x, \mu(x)) \frac{d\mu(x)}{dx}$ measures the assortative matching relationship

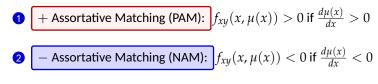
Production Function and Assortative Matching

• We have:

1 + Assortative Matching (PAM):
$$f_{xy}(x, \mu(x)) > 0$$
 if $\frac{d\mu(x)}{dx} > 0$
2 - Assortative Matching (NAM): $f_{xy}(x, \mu(x)) < 0$ if $\frac{d\mu(x)}{dx} < 0$

Production Function and Assortative Matching

• We have:



• f_{xy} describes the supermodularity of f.

• A function $f : \mathbb{R}^k \to \mathbb{R}$ is supermodular if

$$f(x \uparrow y) + f(x \downarrow y) \ge f(x) + f(y)$$

where \uparrow, \downarrow denote element-wise max, min respectively.

• If *f* is twice differentiable, the condition is equivalent to

$$\frac{\partial^2 f}{\partial z_i \partial z_j} \ge 0, \forall i \neq j.$$

Production Function and Assortative Matching

• We have:

1 + Assortative Matching (PAM): $f_{xy}(x, \mu(x)) > 0$ if $\frac{d\mu(x)}{dx} > 0$

2 Assortative Matching (NAM): $f_{xy}(x, \mu(x)) < 0$ if $\frac{d\mu(x)}{dx} < 0$

• f_{xy} describes the supermodularity of f.

- if *f* is super-modular, better workers in better firms is more efficient
- Gives a clear rationale for why better workers should assortatively match with firms.
- Supermodularity is about the rate of change in the change: Do better workers gain *more* from moving to better firms.
- Note: With pure matching (like here), we cannot differentiate worker from firm effects.

Frictionless Matching

Introduction Non-Transferrable Utility Transferrable Utility and Assortative Matching

Matching With Frictions

A simple Shimer and Smith Model

Matching with Frictions: Environment

- A fixed measure of workers indexed by $x \in X$ (uniform)
- A fixed measure of jobs indexed by $y \in \mathbb{Y}$ (uniform)
- A production function f(x, y)
- Common ranking $f_x > 0, f_y > 0$
- We allow matched agents to transfer each other w (the wage).
- unemployed get b(x); vacancies cost c(y)
- workers and firms care about EPV (forward looking)

Matching with Frictions: Allocations

- u(x) is the mass of unemployed workers, v(x) is the mass of vacancies
- h(x, y) is the mass of matches (like μ , but not pure anymore!)
- w(x,y) is the wage and M(x,y) the matching decision (yes/no)

Matching Process

• Meeting technology is imperfect:

- unemployed find offers at rate λ
- vacancies find workers at rate µ
- λ and μ can be endogenized with a matching function:
 - the number of matches is N = m(U, V)

• then
$$\lambda = rac{N}{U}$$
 , $\mu = rac{N}{V}$

- a classic matching function is $m(u, v) = \alpha u^{0.5} v^{0.5}$
- matching is random: workers draw from v(y), firms draw from u(x)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Matching Process: Timing

1 production: matches produce output and pay wage

- 2 meeting: U and V meet
- matching: newly matched pairs decide wether to start partnership
- **4** separation: existing matches destroyed at rate δ

Match Surplus - Present Values

- $W_1(x, y, w)$ and $W_0(x)$ are EPV of employed and unemployed
- $\Pi_1(x, y, w)$ and $\Pi_0(y)$ are EPV of job and vacancy
- Surplus is defined as

$$S(x,y) := W_1(x,y,w) + \Pi_1(x,y,w) - W_0(x) - \Pi_0(y)$$

- Worker EPV: $rW_1(x, y, w) = w + \delta(W_0(x) W_1(x, y, w))$
- Job EPV: $r\Pi_1(x, y, w) = f(x, y) w + \delta(\Pi_0(y) \Pi_1(x, y, w))$

Value of Match Surplus

Some simple algebra gives us that:

$$(r+\delta)S(x,y) = f(x,y) - rW_0(x) - r\Pi_0(y)$$

- Note that we don't need to know the wage to compute this!
- Under TU, the matching decision is $M(x, y) = \mathbf{1}[S(x, y) \ge 0]$
- Surplus can be non-monotonic because of option value!
- Surplus inherits complementarity directly from *f*.

Wages and Division of Surplus

- There an infinite number of ways to split the surplus
- S-S assume: nash bargaining with *α* the worker's bargaining power.
- then the optimal wage w(x, y) solves

$$(1 - \alpha) (W_1(x, y, w) - W_0(y)) = \alpha (\Pi_1(x, y, w) - \Pi_0(y))$$

Wages and Division of Surplus

- There an infinite number of ways to split the surplus
- S-S assume: nash bargaining with *α* the worker's bargaining power.
- then the optimal wage w(x, y) solves

$$(1 - \alpha) (W_1(x, y, w) - W_0(y)) = \alpha (\Pi_1(x, y, w) - \Pi_0(y))$$

- Therefore, upon meeting
 - worker gets $W_0(x) + \alpha(S(x, y))$
 - firm gets $\Pi_0(x) + (1-\alpha)(S(x,y))$

EPV of unemployed and vacancy

• EPV of the unemployed:

$$rW_0(x) = (1+r)b(x) + \lambda \int \alpha M(x,y)S(x,y)\frac{v(y)}{V}dy$$

• EPV of a vacancy:

$$r\Pi_0(x) = -(1+r)c(y) + \mu \int (1-\alpha)M(x,y)S(x,y)\frac{u(x)}{U}dx$$

Matching Distribution

$$\delta h(c,y) = \frac{\lambda}{V} M(x,y) u(x) v(y)$$

Equlibrium

Given the primitives f(x, y), c(y), b(x), r, δ , α , λ , μ , a stationary search equilibrium is defined by

- EPVs: $S(x, y), \Pi_0, W_0, \Pi_1, \Pi_0$
- Allocations: h(x, y), u(x), v(y)
- wage w(x, y) and matching functions M(x, y)

such that

- 1 the EPVs solve the Bellman Equations
- 2 the wage is the Nash barginaing solution
- **3** the distributions satisfy stationarity and adding up propoerties.

Results

- Existence: Yes Shimer and Smith (2000)
- Uniqueness: NO
- Efficiency: Not in general
 - workers do not internalize how the affect others' search (search externality)
 - romm for efficiency improving policies
- Assortative Matching
 - Shimer and Smith (2000) introduce new definitions: monotonicity of matching set boundaries.
 - log supermodular $f(x, y) \rightarrow PAM$
 - log submodular $f(x, y) \rightarrow NAM$
 - this requires stronger complementarities than in frictionless world.

- David Gale and Lloyd S Shapley. College admissions and the stability of marriage. *The American Mathematical Monthly*, 69(1):9–15, 1962.
- Robert Shimer and Lones Smith. Assortative matching and search. *Econometrica*, 68(2):343–369, 2000. ISSN 00129682, 14680262. URL http://www.jstor.org/stable/2999430.